Plastic article or earthenware shaping or treating: apparatus – Preform severing means – Means forming from bulk and downstream severing means
Reexamination Certificate
2002-07-08
2004-07-20
Mackey, James P. (Department: 1722)
Plastic article or earthenware shaping or treating: apparatus
Preform severing means
Means forming from bulk and downstream severing means
C425S377000, C425S392000, C426S516000, C426S518000, C083S331000, C083S651100
Reexamination Certificate
active
06764295
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to devices and methods for cutting elongated extruded strips of a food dough product or the like into individual strip pieces of selected length and having angular end cuts to simulate French fry potato strips cut from whole potatoes. More particularly, this invention relates to an improved yet relatively simple cutter apparatus and method for use in production processes for fast and efficient cutting of a large plurality of extruded dough strips to the desired size and shape.
French fried potato strips constitute a popular consumer food item. Such potato strips are normally prepared by cutting whole raw potatoes into individual elongated strips of selected cross sectional size and shape, and then cooking the cut strips by various processes including at least one frying step in hot oil to produce a crisp and golden-brown exterior encasing a moist and mealy interior. In one common form, French fried potato strips are partially fried, or parfried, and then frozen at a production facility for subsequent shipment to a customer such as a restaurant or the like. The parfried product can be stored in the frozen state until finish preparation is desired, as by finish frying or by optional methods such as oven heating, microwave heating, etc.
The popularity of natural-cut French fried potato strips has led to the development of alternative food products having analogous appearance, texture, and/or taste characteristics. In this regard, a variety of such alternative food products have been produced from a pliable dough mass based upon food products such as potato-based dough, corn-based dough, and others. See, for example, U.S. Pat. No. 4,293,583 which describes a potato-based dough, and WO 01/08499 A1, published Feb. 8, 2001, which describes a corn-based dough. In these products, the dough mass is formed as by extruding into elongated dough strips having a cross sectional size and shape similar to a natural-cut French fry potato strip, whereupon the dough strips are then cut into relatively short individual strip pieces each having a length to emulate a natural-cut French fry potato strip. The thus-formed and thus-cut strips can then be processed by various steps which may include frying in hot oil.
To produce dough-based strips in production quantities, it is necessary to form a large plurality of dough strips on a concurrent basis for further production processing such as cutting and parfrying prior to freezing for shipment and/or storage. In this regard, extrusion forming equipment has been developed for extruding a food-based dough into multiple elongated strips deposited in closely-spaced parallel relation onto a conveyor for transporting the extruded strips to subsequent processing stations. See, for example, U.S. Pat. Nos. 4,302,478; 4,124,339; 4,614,489; 5,536,517; 5,668,540; 5,840,346; and 5,820,911. See also copending Provisional Appln. No. 60/303,628, filed Jul. 5, 2001. These parallel extruded strips are initially conveyed to a cutting station for cutting the elongated extrusions into individual strip pieces having a length similar to French fry strips cut from whole raw potatoes. Thereafter, the cut strip pieces are transported to appropriate parfying, freezing, and packaging equipment.
However, in the past, strip cutting equipment has generally comprised one or more cutting elements arranged for forming the strip pieces with end cuts extending generally perpendicular to the direction of conveyor travel. In other words, the strip cutting equipment has been designed to form the strip pieces with square-cut ends. This strip geometry contrasts with the natural angular end shapes found in French fry strips cut from whole potatoes, wherein this angular end shape is attributable to the curved geometry of the opposite ends of a natural whole potato. Attempts to redesign the strip cutting equipment to cut the extruded strips into individual pieces having more natural-appearing angular end cuts have applied at least some sideways or lateral force to the extruded strips, resulting in the risk of sideways or transverse shifting of the strips on the conveyor. Such lateral shifting of the closely spaced extruded strips can cause the strips to contact each other and stick together to yield undesirable multi-strip clumps. Such clumps are difficult to separate without damaging the strip appearance and integrity.
There exists, therefore, a significant need for further improvements in and to cutting devices and methods for cutting multiple extruded strips formed from a food dough or the like into individual strip pieces having a selected length and angular end cuts to simulate the overall appearance of French fry potato strips cut from whole potatoes, substantially without sideways or lateral shifting and resultant contact or sticking together of adjacent cut strip pieces. The present invention fulfills these needs and provides further related advantages.
SUMMARY OF THE INVENTION
In accordance with the invention, an improved rotary cutter is provided for cutting elongated extruded strips of a food dough product or the like on a conveyor into individual strip pieces of selected length and having angular cut ends simulating French fry strips cut from whole potatoes. The rotary cutter includes a plurality of cutter elements extending transversely and angularly across the conveyor for engaging and cutting a large plurality of the elongated extruded strips carried on the conveyor in closely spaced, substantially parallel relation. The cutter elements are supported and driven for engaging and cutting the extruded strips substantially in the absence of any sideways or transversely directed forces, whereby the individual strip pieces are formed with angular end cuts in a manner substantially eliminating lateral shifting of the cut strip pieces on the conveyor.
In a preferred form of the invention, the rotary cutter comprises a pair of rotary support wheels mounted on opposite sides of the conveyor in longitudinally spaced relation, with each support wheel mounted for rotation on an axis extending transversely or normal to the direction of conveyor travel. The plurality of cutter elements extend transversely and angularly across the conveyor with their opposite ends carried by the rotary support wheels generally at the peripheries thereof. In a preferred geometry, the cutter elements extend across the conveyor at an angle of about 65° to the longitudinal direction of conveyor travel. The cutter elements may be mounted on the support wheels at equiangular spacing to produce individual cut strip pieces of uniform length, or at different selected angular spacings to produce cut strip pieces having a range of lengths similar to French fry strips cut from whole potatoes. Drive means are provided for rotatably driving at least one of the support wheels at a rotational speed for displacing the cutting elements into engagement with the extruded strips at a velocity closely matching the conveyor velocity.
Each cutting element, in accordance with the preferred form of the invention, comprises an elongated carrier bow having opposite ends thereof mounted on the pair of rotary support wheels. This carrier bow includes radially outwardly extending struts formed generally at the opposite sides of the conveyor. A cutting wire extends between these struts and is selectively tensioned for engaging and cutting extruded strips on the underlying conveyor. In the preferred form, conveyor may be provided with a centrally crowned cross sectional shape, and the wire tension is adjustably selected so that the cutting wire assumes a substantially mating shape upon engagement with the extruded strips on the conveyor.
Other features and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
REFERENCES:
patent: 2248291 (1941-07-01), Walbom
patent: 2888888 (1959-06-01), Jorgenson et al.
patent: 3512990 (197
Gallagher Michael M.
Jensen Richard B.
Walker David B.
Heckenberg Donald
J. R. Simplot Company
Kelly Lowry & Kelley LLP
Mackey James P.
LandOfFree
Rotary cutter does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rotary cutter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary cutter will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3218785