Rotary compressor with stabilized rotor

Rotary expansible chamber devices – Working member has planetary or planetating movement – With relatively movable partition member

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

418 76, 418 77, 418 94, 418 99, F01C 102, F03C 200

Patent

active

053164555

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

The present invention relates to a rotary compressor which is for use in the refrigerating cycle of a refrigerator or freezer and which is provided with a compression mechanical portion having an excellent volumeric efficiency.


BACKGROUND ART

In recent years, there has been an increasing demand for a reduction in the size of a compressor for use in the refrigerating cycle. This is achieved by employing a rotary type compressor in place of a reciprocating type compressor.
However, the rotary compressor has a drawback in that the motion of a roller is unstable because the direction of the rotation thereof on its own axis changes during a single rotation thereof, deteriorating the volumeric efficiency thereof.
A conventional rotary compressor will be described below in detail with reference to FIGS. 1 through 4.
Reference numeral 1 denotes a sealed casing and 2 denotes an electric motor portion which is coupled, through a shaft 3, to a mechanical portion body 9 including a cylinder 4, a roller 5, a vane 6, a main bearing 7 and a sub bearing 8. The shaft 3 has a main shaft 3a, a sub shaft 3b and a crank 3c which is eccentric from the axis of the main and sub shafts 3a and 3b by E. The shaft 3 has a hole 3e at the center thereof, and the crank 3c has an oil supplying hole 3f and an oil supplying groove 3g. Reference numeral 10 denotes a spring provided on the rear surface of the vane, and 11a and 11b respectively denote a suction chamber and a compression chamber formed within the cylinder 4 by the roller 5, the vane 6 and the main and sub bearings 7 and 8. The inner peripheral sides of end surfaces 5a and 5b of the roller 5 which respectively face the main and sub bearings 7 and 8 are tapered to form tapered portions 5c and 5d whose cross-sectional area decreases toward the outer peripheral side thereof. Reference numeral 12 denotes an oil supplying mechanism coupled to the shaft 3. Reference numeral 13 denotes a suction pipe which communicates with the suction chamber 11a via a suction passage 14 formed in the sub bearing 8 and the cylinder 4. 15 denotes a discharge hole which communicates with the interior of the sealed casing via a discharge valve 16. 17 denotes a discharge pipe which is opened into the sealed casing 1. 18 denotes a lubricating oil.
In FIG. 4, the arrow of the solid line indicates the direction of the motion of the roller 5 which is obtained at a certain time during the operation of the compressor, and the arrow of the broken line indicates the direction in which the lubricating oil 18 flows over the end surfaces 5a and 5b of the roller as a consequence of the operation of the roller 5. Reference numeral 5e denotes a portion of the tapered portion 5c or 5d of the roller 5 whose cross-sectional area gradually decreases in the direction indicated by the arrow of the broken line, and 5f denotes a portion whose cross-sectional area gradually increases in the same direction.
The compression mechanism of the rotary compressor will now be described. A refrigerant gas supplied from a cooling system (not shown) passes through the suction pipe 13 and the suction hole 14, and then reaches the suction chamber 11a of the cylinder 4. Thereafter, the refrigerant gas is gradually compressed by the rotary motion of the shaft 3 which is generated by the rotation of the electric motor portion 2 in the compression chamber 11b defined by the roller 5 rotatably supported by the crank 3c of the shaft 3 and the vane 6. The compressed refrigerant gas is discharged into the interior of the sealed casing 1 through the discharge hole 15 and the discharge valve 16, and then discharged into the cooling system through the discharge pipe 17.
The high-pressure lubricating oil 18 with the refrigerant contained therein and contained in the sealed casing 1 is supplied to the hole 3e of the shaft 3 by means of the oil supplying mechanism 12. Thereafter, the lubricating oil 18 is supplied to the sliding portion of the main and sub bearings 7 and 8 and to the crank 3c and the inner peripheral side of the roll

REFERENCES:
patent: 3695789 (1972-10-01), Jansson

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rotary compressor with stabilized rotor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rotary compressor with stabilized rotor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary compressor with stabilized rotor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1624823

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.