Static structures (e.g. – buildings) – Transparent panel having active treatment with gas or liquid
Reexamination Certificate
2001-10-03
2004-04-13
Chapman, Jeanette (Department: 3635)
Static structures (e.g., buildings)
Transparent panel having active treatment with gas or liquid
C052S168000, C052S220200
Reexamination Certificate
active
06718703
ABSTRACT:
FIELD OF INVENTION
This invention relates to a roofing tile structure and assembly. In particular, the present invention relates to an array of improved roofing tiles. It also relates to a method of construction of an array of tiles.
In one form this invention relates to a solar heating system, however it is not limited to such system. In particular, the present invention relates to a heating system assembly, which is made up of an array of roofing tiles; each tile or array capable of operating independently so as to allow efficient heating of liquid passing therethrough.
BACKGROUND OF THE INVENTION
Referring to the applicant's own earlier invention, described in AU 651193, there is disclosed a system of interconnected roof tiles. The roof tiles are each provided with cavities to receive liquid from a reservoir and are connected in turn to adjacent tiles to enable continuous flow of liquid therethrough.
During passage of the liquid through the system of interconnected tiles, heat, generated from incident solar radiation on the surface of each tile, is transferred to raise the temperature of the liquid. The liquid, having flowed through a series of interconnected tiles, is collected and stored in an insulated receiving tank.
The applicant has found that the system of continuous flow through a series or cluster of interconnected tiles is inefficient; primarily due to formation of air locks and friction losses occurring across the series of tiles in the direction of flow. As a result, the volume of liquid flowing through a series of interconnected tiles is significantly lower than is required to operate at optimum efficiency. For example in the applicant's prior art system, liquid flow rate through the series of interconnected tiles was measured at 2 liters/min when in fact 15 liters/min is required to achieve optimum efficiency.
Conventional solar panels of the type which, (a) allow transmission of incident solar radiation; (b) operate in combination with tubing of indeterminate length to enable continuous flow of liquid therethrough; and (c) cause heat transfer to the liquid flowing through the tubing, are well known.
It is known that conventional solar panels of the above construction are heavy, cumbersome, and frequently cause damage to the structural integrity of a conventional roof tile. Constructions of this known type have also been known to cause ceiling damage when leakage occurs through damaged roof tiles.
The above problems associated with conventional panel type constructions have been addressed by the present applicant in his granted Australian Patent No. 651193, however modification of the applicant's own prior art system is required to address previously mentioned problems.
There is also known in the building industry to have a system of interconnected solid roof tiles. The roof tiles are generally made from natural materials such as slate or ceramic or other natural clay or stone material. It is also known to have such roof materials be simulated by solid concrete tiles. However, all of these tile structures are based on strong heavy material providing a sturdy roof barrier to the elements. Such heavy roof tiles require a substantial and sturdy roof support structure.
Another major problem of such roof tiles is that they are adequate for providing the necessary barrier to the elements but do not provide any other benefits. For example it is necessary in usual roofing systems to include an insulation layer beneath the tiles in the roof cavity above the internal ceilings of the building.
Further in case of the need to walk over such tiles for maintenance or replacement or access to roof mounted accessories the tiles can be readily broken by the concentrated weight of a person on one or more tiles.
It is therefore an object of the invention to provide an improved roof tile, which overcomes or ameliorates one or more of the above identified problems.
It is also an object of the invention to provide a much more versatile tile in its use and application.
It is a still further object of the invention to provide a more cost effective roof tile or roofing system.
SUMMARY OF THE INVENTION
In accordance with the invention there is provided a roofing tile having an outer shape able to fit together with a plurality of similarly formed tiles to create an array of tiles that covers a roof and wherein the roofing tile has an internal cavity able to be filled with gas, liquid or material, wherein the roof tile provides at least a roof protecting function of combating the usual natural elements such as hail, rain and sunshine and the like.
The tile can have a sealable closure to the cavity whereby after the tile is filled with liquid or material or is retained empty the closure can be sealed to prevent escape of gas, liquid or material or ingress of unwanted gas, liquid or material.
In one form the gas, liquid or material can be fire retardant material. In another form the material and structure of the tile and the choice of the gas, liquid or material can be selected to provide an optical effect such as a choice of colour of the tile by the choice of colour of the filling gas, liquid or material. In another form the combination of materials, structure and filler provides a transparent or translucent effect to provide a selectable roof “window”.
In one embodiment there is a single tile having an internal cavity that can be filled through inlet such that the individually filled tile will be a lightweight product making it easy to transport and install. The required filler can be inserted into the tile when on the ground prior to forming the array or when in position on the roof in an array.
In use of the method of forming a roof for a building, the method includes the steps of providing one or more tiles able to be located relative to each other or other tiles to form an array that forms a roof or the like, at least one tile incorporating a cavity therewithin, an inlet for receiving a gas, liquid or material filler into said cavity and an outlet connecting with an inlet of an adjacent tile; providing said filler to said tile at a location prior to positioning in an array or after being positioned in the array through the inlet feeding to each cavity; and providing a sealable closure for sealing each inlet and cavity to seal the one or more tiles in the array.
In accordance with the invention there is also provided an array of tiles, each tile in said array incorporating a cavity therewithin for the passage of gas, liquid or material filler therethrough, said each tile further incorporating an inlet for receiving said filler and at least one sealable closure for closing said array or part of the array to prevent ingress or egress from the array.
Each tile may further include an outlet, wherein said each tile in said array is interconnected, either directly or via an adjacent tile, via said inlet to an inlet manifold and each tile in said array is correspondingly interconnected, either directly or via an adjacent tile, via said outlet to an outlet manifold such that the filler can received by the array from a single location and the array can be sealed at that single location by said sealable closure. The inlet and outlet manifolds may be structural parts formed by shaped cavities of each tile.
It is one object of the present invention to improve the efficiency of heating liquid. A further object of the present invention is to ameliorate some or all of the disadvantages of the applicants earlier system.
Therefore the present invention, in a first aspect, is directed to a solar heating assembly including an array of tiles, each tile in said array being exposed to incident solar radiation and incorporating a cavity therewithin for the passage of liquid therethrough, said each tile further incorporating an inlet for receiving liquid from a reservoir and an outlet for returning said liquid in said cavity to a main collection vessel, wherein said each tile in said array is interconnected, either directly or via an adjacent tile, via said inlet to an inlet manifold and each
Chapman Jeanette
Lukley Holdings Pty Ltd.
LandOfFree
Roofing tile assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Roofing tile assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Roofing tile assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3202996