Roller assembly containing externally heated roller with...

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Composite having voids in a component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S036500

Reexamination Certificate

active

06521332

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a fuser apparatus useful for heat-fixing a heat-softenable toner material to a substrate and, more particularly, to a roller assembly containing an externally heated fuser roller whose outer layer includes a cured fluorocarbon random copolymer.
BACKGROUND OF THE INVENTION
Heat-softenable toners are widely used in imaging methods such as electrostatography, wherein electrically charged toner is deposited imagewise on a dielectric or photoconductive element bearing an electrostatic latent image. In such methods, the toner is then generally transferred to a surface of another substrate, such as, for example, a receiver sheet comprising paper or a transparent film, where i fixed in place to yield the final desired toner image.
When heat-softenable toners comprising, for example, thermoplastic polymeric binders, are employed, the usual method of fixing the toner in place involves applying heat to soften the toner that has been transferred to the receiver sheet surface, then allowing or causing the toner to cool.
One well-known fusing method entails passing the toner-bearing receiver sheet through the nip formed by a pair of opposing rolls, a heated roller, usually referred to as a fuser roller, that contacts the toner-bearing surface of the receiver sheet in order to heat and soften the toner. The other roller, usually referred to as a pressure roller, serves to press the receiver sheet into contact with the fuser roller. In some other fusing methods, the configuration is varied, with a flat plate or belt replacing the fuser roller and/or pressure roller. The description herein, while generally directed to a generally cylindrical fuser roller in combination with a generally cylindrical pressure roller, is not limited to fusing systems having members with those configurations. For that reason, the terms “fuser member” and “pressure member” are generally used herein in place of “fuser roller” and “pressure roller”.
The fuser member usually comprises a rigid core covered with a resilient material, which will be referred to herein as a “base cushion layer.” The resilient base cushion layer and the amount of pressure exerted by the pressure member serve to establish the area of contact of the fuser member with the toner-bearing surface of the receiver sheet as it passes through the nip of the fuser member and pressure members. The size of this area of contact helps to establish the length of time that any given portion of the toner image will be in contact with and heated by the fuser member. The degree of hardness, often expressed as “storage modulus”, and the stability of the base cushion layer are important factors in establishing and maintaining the desired area of contact.
In some previous fusing systems, it was found advantageous to vary the pressure exerted by the pressure member against the receiver sheet and fuser member. This variation in pressure can be provided, for example, in a fusing system having a pressure roller and a fuser roller, by slightly modifying the shape of the pressure roller. The variance of pressure, in the form of a gradient of pressure that changes along the direction through the nip that is parallel to the axes of the rollers, can be established by, for example, continuously varying the overall diameter of the pressure roller along the direction of its axis such that the diameter is smallest at the midpoint of the axis and largest at the ends of the axis, resulting in the pressure roller having a “bow tie” or “hourglass” shape. This shape causes the pair of rollers to exert more pressure on the receiver sheet in the nip in the areas near the ends than in the vicinity of the roller midpoints. This gradient of pressure helps to prevent wrinkles and cockle in the receiver sheet as it passes through the nip. Over time, however, the fuser roller begins to permanently deform to conform to the shape of the pressure roller, and the gradient of pressure is reduced or lost, along with its attendant benefits. It has been found that permanent deformation, often referred to as “creep”, of the base cushion layer of the fuser roller is the greatest contributor to this problem.
U.S. Pat. No. 4,372,246 discloses an externally heated fusing member whose outer layer is formed from a silicone elastomer containing dispersed iron oxide particles. In the illustrative examples, the fuser rolls were heated to a maximum surface temperature of only 270° F. (132° C.).
U.S. Pat. No. 5,208,638 discloses a perfluoroelastomer containing a dispersion of conductive material for use as an intermediate transfer surface in an electrostatic image transfer system employing liquid toners.
U.S. Pat. No. 6,061,545 discloses a heat roller that includes an internal heating element and an outer layer of fluoropolymer containing particles of a thermally conductive filler. The listing of suitable fluoropolymers in the reference includes PTFE, FEP, PFA TEFLON®, VITON®, and FLUOREL® materials.
U.S. Pat. Nos. 6,127,041 and 5,017,432 are both related to fuser members. In U.S. Pat. No. 6,127,041, the disclosed fuser member has a metallic core on which is coated a composite layer comprising a silicone T-resin, a crosslinked poly(dialkylsiloxane) incorporating an oxide, and a silane crosslinking agent. The oxide in the composite layer of the fuser member can be an oxide or a mixture of oxides, aluminum oxide, iron oxide, tin oxide, zinc oxide, copper oxide, nickel oxide, and silica being listed in the reference as typical oxides. In U.S. Pat. No. 5,017,432, the disclosed fuser member has a fusing surface that comprises VITON GF®, poly(vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene), that has been cured with a nucleophilic curing agent.
External heater rollers for nip-forming rollers such as the DigiSource 911™ fusing apparatus are internally heated. These types of rollers usually have either an anodized surface layer or a TEFLON® surface layer with very low thermal resistance. The thinness of these layers does not allow a large contact length when a nip is formed with a fuser roller. A longer nip would allow more heating time for the fusing surface. To achieve this, an elastomer layer thicker than the anodized or TEFLON® surface layer could be applied to the heater roller. However, it would create a time delay for the heat energy to reach the heated roller surface due to the increase in thermal resistance that results from increased thickness of the elastomer layer. This time delay would increase thermal response time when altering the fuser roller temperature for any process reason and could preclude the use of gloss control through fuser roller temperature changes. Various receiver types have different thermal properties that affect gloss and fusion quality. Having the ability to change the fuser roller surface temperature within the time between consecutive receivers allows fusion and glossing to be tuned within a document run to receivers that are of different types, without reducing the productivity of the entire electrophotographic system.
Using radiant external surface heaters in sheet-fed processes presents the potential fire hazard of paper ignition. Radiant energy from a radiant external heater is not instantly dissipate when power is discontinued. The radiant surface will emit enough radiant energy to ignite a cellulose-base receiver such as paper if it has stalled under the radiant heater or wrapped around the fuser roller. The Xeikon DCP-32 color printer uses radiant heaters to heat its glossing rollers (GEM), allowing changes in the glossing rollers surface temperatures so that each receiver type will have consistent image gloss or quality. Although a web of paper rather than individual sheets is employed, there is still a substantial fire hazard if a safety system is not used. The Xeikon printer is provide with a safety system in the form of a clamshell that houses the radiant heat sources and closes if there are any jams that completely stop the machine. Closing of the clamshell isolates the radiant heat sources, preventin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Roller assembly containing externally heated roller with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Roller assembly containing externally heated roller with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Roller assembly containing externally heated roller with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3131503

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.