Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Of specified material other than unalloyed aluminum
Reexamination Certificate
2003-02-11
2004-10-19
Nelms, David (Department: 2818)
Active solid-state devices (e.g., transistors, solid-state diode
Combined with electrical contact or lead
Of specified material other than unalloyed aluminum
C438S687000, C438S648000
Reexamination Certificate
active
06806579
ABSTRACT:
TECHNICAL FIELD
Embodiments of the present invention relate generally to semiconductor devices, and more particularly to the formation of vias between conductive lines in neighboring metallization layers of multi-layer integrated circuits.
BACKGROUND
In the evolution of integrated circuits in semiconductor technology, there has been a trend towards device scaling. Scaling or reducing the size increases circuit performance, primarily by increasing circuit speed, and also increases the functional complexity of the integrated circuits. The number of devices per chip has increased throughout the years. When integrated circuits contained only a small number of devices per chip, the devices could be easily interconnected in a single level. However, the need to accommodate more devices and increased circuit speed has led to the use of multi-level or multi-layer interconnects.
In a multilevel interconnection system, the area needed by the interconnect lines is shared among two or more levels, which increases the active device fractional area, resulting in increased functional chip density. Implementing a multilevel interconnect process to a fabrication scheme increases the complexity of the manufacturing process. Typically, the active devices (e.g., the transistors, diodes, capacitors and other components) are manufactured in the lower layers of wafer processing, often referred to as the Front End Of the Line (FEOL). After the active devices are processed in the FEOL, the multilevel interconnects are usually formed in the processing timeframe often referred to as the Back End Of the Line (BEOL).
As semiconductor devices continue to shrink, various aspects of multilevel interconnect processes are being challenged. The propagation delay of integrated circuits becomes limited by the large RC time delay of interconnection lines when minimum features size is decreased below about 1 &mgr;m, for example. Therefore, the industry is tending towards the use of different materials and processes to improve multilevel interconnect implementations.
In the past, interconnect lines were typically made of aluminum. Now there is a trend towards the use of copper for interconnect lines because it is more conductive than aluminum. For many years, the insulating material used to isolate conductive lines from one another was silicon dioxide. Silicon dioxide has a dielectric constant (k) of approximately 4.0 or greater, where the dielectric constant value k is based on a scale where 1.0 represents the dielectric constant of a vacuum. However, now there is a move in the industry being made to the use of low-k dielectric materials (e.g., having a dielectric constant k of 3.6 or less) for the insulating material. The change in both the conductive material and insulating material used in multilevel interconnect schemes is proving challenging and requires a change in processing techniques.
Copper is a desirable conductive line material because it has a higher conductivity than aluminum. However, the RC (resistance/capacitance) time delay of copper conductive lines can be problematic, so low-k dielectric materials are used to reduce the capacitive coupling and reduce the RC time delay between interconnect lines. Some low-k insulating materials being used include organic spin-on materials, which must be heated to remove the liquid, or solvent. Often these low-k insulating materials have a high coefficient of thermal expansion (CTE) compared to metals such as copper. For example, some low-k dielectric materials have a CTE of in the order of 70 p.p.m./degrees C., compared to copper, which has a CTE of approximately 11 p.p.m./degrees C.
Semiconductor wafers are frequently temperature-cycled during fabrication due to the nature of the manufacturing process. When a device comprises a plurality of layers of metallization and dielectric materials, the solvent-removing heating step for the low-dielectric constant material layers must be repeated numerous times (e.g., each layer must be cured), which can be problematic. The mismatch of thermal expansion coefficients of metal conductive lines and low-k dielectric insulating layers results in the low-k dielectric insulating layer expanding more than the copper conductive lines. This CTE mismatch causes thermo-mechanical stress, leading to increased resistances, via delaminations, and electrical intermittencies and opens, particularly where vias contact underlying conductive lines, resulting in reduced yields.
SUMMARY OF THE INVENTION
Embodiments of the present invention achieve technical advantages as a via for connecting to an underlying conductive line and a method of forming the same that provides strength, robustness and stabile electrical resistance to metal interconnect layers of a multi-layer semiconductor device. The via is intentionally offset from an underlying conductive line. A portion of the insulating material proximate the top edge of the conductive line is removed, so that the via contacts a portion of the side of the conductive line, at the top edge. This increases the surface area so that there is a larger amount of surface area for the via to make contact with the conductive line, increasing the strength of the bond. In one embodiment, the conductive line includes an outwardly extending hook region, such that when the via is formed, a locking region is formed in the via proximate the conductive line hook region, further strengthening the structure.
In accordance with a preferred embodiment of the present invention, a method of manufacturing a semiconductor device includes providing a workpiece, disposing a first insulating layer over the workpiece, and patterning the first insulating layer with a conductive line pattern. The conductive line pattern is filled with conductive material to form at least one conductive line within the first insulating layer. The conductive line includes a top surface and at least one sidewall. A second insulating layer is disposed over the first insulating layer and the at least one conductive line. A portion of the second insulating layer is removed to expose at least a portion of the top surface of the conductive line. A portion of the first insulating layer is removed to expose at least a top portion of the at least one sidewall of the conductive line, wherein removing a portion of the second insulating layer and removing a portion of the first insulating layer comprise forming a via opening. The via opening is filled with conductive material to form a via, wherein the via makes contact with at least a portion of the top surface of the conductive line and at least a top portion of the at least one sidewall of the conductive line.
In accordance with another preferred embodiment of the present invention, a method of forming a via of a semiconductor device includes providing a workpiece, disposing a first insulating layer over the workpiece, and forming a hard mask over the first insulating layer. The hard mask and the first insulating layer are patterned, wherein patterned portions of the hard mask and the first insulating layer comprise sidewalls. A first conductive liner is formed over at least the sidewalls of the patterned hard mask and first insulating layer, and a first conductive material is formed over the first conductive liner, wherein a portion of the first conductive liner and a portion of the first conductive material comprise at least one conductive line. The conductive line includes a top surface and at least one sidewall, wherein the conductive line at least one sidewall comprises an outwardly extending hook region. A cap layer is formed over the first insulating layer and the first conductive liner, and a second insulating layer is disposed over the cap layer. A portion of the second insulating layer and a portion of the cap layer are removed to expose at least a portion of the top surface of the conductive line, and a portion of at least the hard mask is removed to expose at least a top portion of the at least one sidewall of the conductive line, wherein removing a portion of at least the hard mask and remov
Cowley Andy
Kaltalioglu Erdem
Stetter Michael
Infineon - Technologies AG
Nelms David
Nguyen Thinh T
Slater&Matsil, L.L.P.
LandOfFree
Robust via structure and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Robust via structure and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robust via structure and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3321344