Optical waveguides – With disengagable mechanical connector – Optical fiber/optical fiber cable termination structure
Reexamination Certificate
2002-09-13
2004-09-14
Nasri, Javaid H. (Department: 2839)
Optical waveguides
With disengagable mechanical connector
Optical fiber/optical fiber cable termination structure
Reexamination Certificate
active
06789954
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to optical fiber connectors, and, more particularly, to an optical fiber connector for use with robust optical fiber.
BACKGROUND OF THE INVENTION
In optical fiber communications, connectors for joining fiber segments at their ends, or for connecting optical fiber cables to active or passive devices, are an essential component of virtually any optical fiber system. The connector or connectors, in joining fiber ends, for example, has, as its primary function, the maintenance of the ends in a butting relationship such that the core of one of the fibers is axially aligned with the core of the other fiber so as to maximize light transmissions from one fiber to the other. Another goal is to minimize back reflections. Such alignment is extremely difficult to achieve, which is understandable when it is recognized that the mode field diameter of, for example, a singlemode fiber is approximately nine (9) microns (0.009 &mgr;m.) Good connection (low insertion loss) of the fiber ends is a function of the alignment, the width of the gap (if any) between the fiber ends, and the surface condition of the fiber ends, all of which, in turn, are inherent in the particular connector design. The connector must also provide stability and junction protection and thus it should minimize thermal and mechanical movement effects.
In the present day state of the art, there are numerous, different, connector designs in use for achieving low insertion loss and stability. In most of these designs, a pair of ferrules (one in each connector), each containing an optical fiber end, are butted together end to end within a connector adapter and light travels across the junction. Zero insertion loss requires that the fibers in the ferrules be exactly aligned, a condition that, given the necessity of manufacturing tolerances and cost considerations, is virtually impossible to achieve, except by fortuitous accident. As a consequence, most connectors are designed to achieve a useful, preferably predictable, degree of alignment, some misalignment being acceptable.
Alignment variations between a pair of connectors are most often the result of the offset of the fiber core centerline from the ferrule centerline. This offset, which generally varies from connector to connector, is known as “eccentricity”, and is defined as the distance between the longitudinal centroidal axis of the ferrule at the end face thereof and the centroidal axis of the optical fiber core held within the ferrule passage.
There are numerous arrangements in the prior art for “tuning” a connector, generally by rotation of its ferrule, to achieve an optimum direction of its eccentricity. One such arrangement is shown in U.S. Pat. No. 5,481,634 of Anderson et al, wherein the ferrule is held within a base member which may be rotated to any of four rotational or eccentricity angular positions. In U.S. Pat. No. 4,738,507 of Palmquist there is shown a different arrangement and method for positioning two connectors relative to each other for minimum insertion loss or maximum coupling. In U.S. Pat. No. 6,155,146 of Andrews, et al. there is shown still another arrangement for tuning a coupler, in which the ferrule, which is mounted in a barrel having a front flange member having six positions of rotation, can be rotated to that one of the six positions producing the most favorable result. In U.S. Pat. No. 6,663,293 of Lampert and Lewis, issued Dec. 16, 2003, another tunable optical fiber connector is shown.
In virtually all such connectors, stability arid resistance to various types of mechanical stress, such as, for example, an accidental “pull” stress on the cable, or other stresses which, conceivably can disrupt the tuning, are highly desirable, if not essential to proper operation of the connector. This is especially true of jumper cables with connectors at each end. A large measure of the “pull-proof” characteristic is present where the optical fiber has strength members, such as aramid yarn, incorporated into a coating or jacket surrounding the fiber or cable. These strength members are generally firmly attached, as by crimping, to the connector and any pull stresses are applied to the aramid fibers and not to the optical fiber which is, therefore, efficiently shielded from the stresses. However, strength members and materials represent an added expense to the cost of the connector.
A recent advance in the optical fiber art has been the development of what is commonly referred to as “robust” optical fiber, which has a core that is substantially the same size or diameter as that of more conventional fibers, but has a core cladding that is materially greater in diameter (or thickness) than the cladding of prior art fibers. Robust fiber has a core plus cladding diameter of approximately two hundred microns (200 &mgr;m) whereas conventional fiber has a diameter of one hundred twenty-five microns (125 &mgr;m). Robust fiber has many advantages over conventional fiber, as pointed out in the aforementioned related DiGiovanni et al application, among which is a sufficient fiber strength to resist many of the stresses encountered in use. As such, the robust fiber doesn't require the aramid strength members in general usage. However, there then is no separate strength member such as the aramid fiber to absorb high axial loads, and these loads, as well as other stresses are applied directly to the fiber. Further, with enough axial tension stress the ferrule of the connector can be pulled out of engagement with the ferrule of the other element in the connection, such as another connector, thereby disrupting low loss communication between the two, or, in extreme cases, resulting in complete disconnection.
SUMMARY OF THE INVENTION
The present invention, shown hereinafter as incorporated in a modified LC connector for optical fiber, more particularly for robust fiber, assures that the connector is substantially pull proof. While an LC connector is shown hereinafter in a preferred embodiment of the invention, it is to be understood that the principles and features of the invention are applicable to other types of connectors as modified.
The basic structure of an LC type connector includes a ferrule-barrel assembly for holding the end of an optical fiber which extends axially therethrough and a housing which holds the ferrule-barrel assembly. The housing has a latching arm for latching the connector in a mating connector adapter, for example. A coil spring member contained within the housing surrounds the barrel and bears against, for example, an interior wall of the housing and a flange portion of the barrel, thereby supplying forward bias to the ferrule-barrel assembly relative to the housing. The flange portion generally is shaped to be supported within an interior cavity or seat of the housing in any one of, for example, six rotational orientations with respect to the central axis of the fiber holding structures. A ferrule extends axially from the barrel member and contains a fiber end therein. The connector is thus tunable to any one of six possible rotational orientations by axially pulling the flange portion away from the seat sufficient to free it for rotation.
In a first illustrative embodiment of the invention, the fiber contained in the ferrule is a robust fiber having a diameter of at least 200 &mgr;m. The barrel includes a tubular portion extending rearwardly of the flange portion, with the ID thereof enlarged to accommodate the enlarged coated and jacketed fiber. In normal use the ferrule moves rearwardly from the polished end face to reach the optical plane (OP), a distance of approximately 0.020 inches, for example. However, the ferrule assembly can move rearwardly a much greater distance in a normal LC connector, and the opposing ferrule can follow up to approximately 0.020 inches to prevent decoupling. In a normal pull-proof connector the aramid yarns take up the tensile load. A cable retention tubular member which functions as a stop member is axially aligned with the barrel and fixedly mounted within
Lampert Norman R.
Lu Yu
Subh Naif T.
Fitel USA Corp.
Nasri Javaid H.
Thomas Kayden Horstemeyer & Risley LLP
LandOfFree
Robust fiber connector does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Robust fiber connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robust fiber connector will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3234128