Fluent material handling – with receiver or receiver coacting mea – Plural filling means – For plural receivers simultaneously filled
Reexamination Certificate
2002-04-01
2003-10-28
Huson, Gregory (Department: 3751)
Fluent material handling, with receiver or receiver coacting mea
Plural filling means
For plural receivers simultaneously filled
C141S001000, C141S130000, C422S105000, C422S105000, C422S105000
Reexamination Certificate
active
06637476
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to robotically manipulable sample handling tools, such as robotic pipetting devices.
2. Related Art
Robotically manipulated tools having a plurality of picking needles are widely used, for example, in proteomic and genomic research. These devices are used to move material samples both to and from a variety of different work areas, such as microtiter trays, gels having separated DNA fragments, and other material holding devices. Some such tools may have a plurality of needles arranged in an array that corresponds to wells in a microtiter tray, such as the commonly-known 96-well or 384-well plate. The array of needles arranged to correspond with all of the wells in a microtiter tray may allow material to be simultaneously deposited in, and removed from, wells in the microtiter tray, thus increasing the speed at which a plurality of samples in a microtiter tray may be processed.
Many sample handling tools are arranged so that all of the needles on the tool may be simultaneously actuated, e.g., so material may be simultaneously deposited in all wells of a tray. While this arrangement can provide rapid handling of multiple samples, it does not allow for individualized handling for selected wells in a tray. Other handling tools provide for individual actuation of needles on a tool, but require that a controller for the tool be capable of outputting an individual control signal for each needle actuator. The inventor has appreciated that providing individual control signals for each needle can be cumbersome. For example, a sample handling tool having 96 needles would require at least 96 control signal leads to provide a control signal for each needle.
SUMMARY OF THE INVENTION
Aspects of the invention provide a sample handling tool that allows for individual control of needles on the tool without requiring a controller to output individual control signals for each of the needles. In one embodiment, needles and their corresponding actuators may be grouped into control groups so that actuators in a control group receive a same control signal from a controller, e.g., to enable the actuators to activate a corresponding needle. The needles and actuators may also be grouped into drive groups so actuators in a drive group receive a same drive signal from the controller, e.g., to activate a needle. Actuators receiving both a control signal to enable the actuator and a drive signal to actuate the needle will, in fact, actuate the needle. The groups may be arranged so that control groups have only one actuator
eedle in common with drive groups. As a result, an individual needle may be actuated by a controller by providing an appropriate control signal to the needle's control group and an appropriate drive signal to the needle's drive group. Since the control and drive groups have only the one needle in common, only the one needle on the tool may receive both an appropriate control and drive signal, thereby actuating the needle.
In one illustrative embodiment in accordance with the invention, a robotically manipulable material handling tool includes a tool body and a plurality of needles mounted to the tool body. Each of the plurality of needles is constructed and arranged to remove material from a work area and deposit material on a work area. The tool also includes a plurality of actuators with each of the plurality of actuators associated with a corresponding one of the plurality of needles. The actuators are constructed and arranged to actuate a corresponding needle and are grouped into a first member of control groups and a second number of drive groups, with each control group and drive group having only one actuator in common. A plurality of control switches are mounted to the tool body with each of the plurality of control switches associated with a corresponding control group of actuators and adapted to provide a control signal to actuators in the corresponding control group. A plurality of drive switches are mounted to the body with each of the drives switches associated with a corresponding drive group and adapted to provided a drive signal to the actuators in the corresponding drive group. The plurality of control switches and drive switches are constructed and arranged to provide control signals and drive signals, respectively, to individually actuate each of the plurality of needles.
In another illustrative embodiment, a robotically manipulable material handling tool includes a tool body and a first number of needles mounted to the tool body. Each of the needles is constructed and arranged to remove material from a work area and deposit material on a work area. A first number of membrane valves are each associated with a corresponding needle and control flow for the needle. A valve controller is constructed and arranged to control each of the membrane valves by providing a maximum of a second number of signals to the membrane valves, where the second number is less than the first number. The valve controller is adapted to control the membrane valves to individually control flow for each needle.
In another illustrative embodiment, a robotically manipulable material handling tool includes a tool;body and a first number of needles mounted to the tool body. Each of the needles is constructed and arranged to remove material from a work area and deposit material on a work area. The tool also includes a first number of actuators with each actuator associated with a corresponding needle and constructed and arranged to cause the corresponding needle to move relative to the tool body. A controller is mounted to the tool body and constructed and arranged to control each of the actuators by providing a maximum of a second number of signals to the actuators where the second number is less than the first number. The controller is adapted to control the actuators and individually move needles relative to the tool body and/or simultaneously move a plurality of needles relative to the tool body.
In another illustrative embodiment, a robotically manipulable material handling tool includes a tool body and a plurality of needles mounted to the tool body in M columns and N rows. Each of the needles is constructed and arranged to remove material from a work area and deposit material on a work area. A plurality of addressing valves are each associated with a corresponding needle and control flow for the needle. A plurality of switches provides signals to the addressing valves and the number of switches is equal to M+N. The plurality of switches are adapted to provide signals to the addressing valves to individually control flow for each needle.
In another illustrative embodiment, a robotically manipulable material handling tool includes a tool body and a plurality of needles mounted to the tool body in M columns and N rows. Each of the needles is constructed and arranged to remove material from a work area and deposit material on a work area. A plurality of membrane valves are each associated with a corresponding needle and control flow for the needle to move the needle and/or cause fluid to move in the needle. A plurality of control valves provide fluid control signals to the membrane valves with each control valve associated with the corresponding column of needles and providing a fluid control signal to control the membrane valves corresponding to the column of needles between open and closed states. A plurality of drive valves provide fluid drive signals to the membrane valves with each drive valve associated with a corresponding row of needles and providing a fluid drive signal to either move needles and/or cause fluid to move in needles in the corresponding row. The number of control and drive valves is equal to M+N and the control and drive valves are adapted to provide signals to the membrane valves to individually control either movement of and/or flow in each needle.
REFERENCES:
patent: 3568735 (1971-03-01), Lancaster
patent: 3744376 (1973-07-01), Carpenter
patent: 3782682 (1974-01-01), Lale
patent:
Huson Gregory
Huynh Khoa
Protedyne Corporation
Wolf Greenfield & Sacks P.C.
LandOfFree
Robotically manipulable sample handling tool does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Robotically manipulable sample handling tool, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robotically manipulable sample handling tool will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3164945