Robotic apparatus and methods for maintaining stocks of...

Animal husbandry – Entomological culture device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C119S678000

Reexamination Certificate

active

06688255

ABSTRACT:

FIELD
The present invention concerns robotic apparatus and methods for maintaining stocks of small organisms, such as fruit flies or any of various other small organisms, useful in the study of genetics.
BACKGROUND
Drosophila melanogaster
, also known as the common fruit fly, is particularly useful in biological research, such as in genetics and developmental biology, because it is a small animal, has a short life cycle, and is easy to keep in large numbers.
The life cycle of the fruit fly has four stages: (1) the egg stage; (2) the larval stage; (3) the pupal stage; and (4) the adult stage. During the egg stage, an egg develops and hatches into a worm-like larva. During the larval stage, the larva eats and grows continuously over the course of several days. The larva then transforms into a pupa, which matures into an adult fly over the course of several days.
Research institutions and commercial entities maintain stocks of flies for their own use and/or for selling to other researchers. A collection of stocks may includes hundreds, sometimes thousands, of vials or containers, each containing a population of flies belonging to a particular genotype.
To sustain a population of adult flies, the flies must be periodically transferred to a new vial containing a fresh supply of food. Typically, flies kept at about 18° C. must be supplied with fresh food about every 8 weeks, although the exact time interval may vary depending upon the conditions in which the flies are kept. Generally, supplying the flies with fresh food involves placing a vial of flies, in an upside down position, on top of a vial of fresh food, with the open tops of the vials held tightly against each other to prevent the flies from escaping. Then, by tapping the vials against the top of a table, the flies are caused to fall from the upper vial into the lower vial. It is readily appreciated that feeding an entire collection of stocks requires a large number of monotonous man-hours. This process of manually transferring fly populations to vials of food may even cause repetitive-motion injury to personnel maintaining the stocks.
Hence, there is a need for automated equipment capable of maintaining a collection of flies.
SUMMARY
The present invention concerns an apparatus useful in maintaining a collection of small organisms, such as insects. The apparatus performs various tasks, one of which is the automatic transfer of live organisms (e.g., fruit flies) from donor vials, or containers, to corresponding recipient vials, or containers, such as for the purpose of feeding the organisms. In addition, in an illustrated embodiment, the apparatus makes bar-code labels for applying to recipient vials and is capable of reading bar-code labels on donor and recipient vials.
According to one representative embodiment, an apparatus is provided for transferring live organisms from a donor container to a recipient container. The apparatus comprises a source of an anesthetic, such as CO
2
, for temporarily immobilizing the organisms in the donor container and a source of compressed gas for blowing the immobilized organisms from the donor container into the recipient container.
In particular embodiments, a transfer device is configured to automatically introduce the anesthetic into the donor container for temporarily immobilizing the organisms. An illustrated transfer device comprises a needle fluidly connectable to the source of the anesthetic. The transfer device is operable to insert the needle into the donor container (e.g., through a porous plug in the donor container) for injecting the anesthetic into the donor container.
The illustrated transfer device also includes a gas manifold that is adapted to receive the open tops of the donor and recipient containers and is fluidly connectable to the source of compressed gas. The gas manifold is configured to direct the flow of gas into the donor container such that the organisms are carried by the flow of gas into the recipient container.
The compressed-gas manifold in disclosed embodiments comprises a manifold block defining an opening extending through the block. The opening is dimensioned to receive the open top portion of a donor container on one side of the block and the open top portion of the recipient container on the other side of the block. The manifold block may include a gas-delivery tube that extends into the donor container whenever the open top of the donor container is inserted into the opening of the manifold block. The tube blows air in a direction through the open top of the donor container, the opening in the manifold block, and into the recipient container to carry the organisms from the donor container to the recipient container.
The transfer device also may include a donor-container positioner and a recipient-container positioner for positioning the donor container and recipient container, respectively, at selected positions for facilitating the transfer of the organisms from the donor container to the recipient container. For example, in one mode of operation, the donor-container positioner is used to move the donor container to a first position for receiving the needle for anesthetizing the organisms and to a second position at the gas manifold to allow the organisms to be transferred to the recipient container. Similarly, the recipient-container positioner is used to position the recipient container at the gas manifold for receiving the organisms from the donor container.
The apparatus also may include a robotic apparatus, such as a robotic arm, for moving the donor and recipient containers to selected positions in three-dimensional space. In one mode of operation, for example, the robotic arm is used to pick up the donor and recipient containers at selected positions in respective container rack(s) and transfer the donor and recipient containers to the donor-container positioner and the recipient-container positioner, respectively, for transferring the organisms from the donor container to the recipient container. After the organisms are transferred to the recipient container, the robotic arm picks up the donor and recipient containers and transfers the containers to selected positions in respective container rack(s).
According to another representative embodiment, an apparatus is configured to automatically transfer live organisms from a donor container to a recipient container. The apparatus desirably includes an anesthetizing mechanism configured to automatically expose the organisms to an anesthetic for immobilizing the organisms before they are transferred from the donor container to the recipient container. The apparatus also may include a gas manifold fluidly connectable to a gas source (e.g., a source of compressed gas). The gas manifold is configured such that, whenever the donor and recipient containers are positioned at the gas manifold and gas is supplied to the gas manifold, a flow of gas is introduced into the donor container such that the organisms are transferred by the gas into the recipient container.
According to yet another representative embodiment, an apparatus for transferring live organisms from a donor container to a recipient container comprises a gas manifold fluidly connectable to a source of compressed gas. The gas manifold is configured such that, whenever the donor container and the recipient container are positioned at the gas manifold and the source of compressed gas is activated to supply gas to the gas manifold, gas is introduced into the donor container such that the organisms are blown by the gas into the recipient container.
According to still another representative embodiment, an apparatus is provided for transferring populations of live organisms contained in donor containers to corresponding recipient containers. A robotic arm is provided for picking up donor and recipient containers and transferring the containers to a transfer device. The transfer device is operable to automatically transfer insect populations from donor containers to respective recipient containers.
According to another representative embodiment,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Robotic apparatus and methods for maintaining stocks of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Robotic apparatus and methods for maintaining stocks of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robotic apparatus and methods for maintaining stocks of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3294076

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.