Robot mounter for mounting core slider

Adhesive bonding and miscellaneous chemical manufacture – Surface bonding means and/or assembly means therefor – With means applying wave energy or electrical energy...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S379600, C156S556000, C156S566000

Reexamination Certificate

active

06280564

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a robot mounter and a method of mounting core sliders, especially a robot mounter which can process the steps of applying adhesive, mounting or hardening temporarily the adhesive in a short time and which is simple in construction, low-cost and small in size, and relates to a method of mounting core sliders using the robot mounter.
Although ordinary chip mounters are supplied to market by many suppliers, there is not any automatic-installing, small-size core slider for a hard-disk drive.
FIG. 9
shows work
4
wherein sixteen suspensions
2
are formed continuously therein. Portion to be bonded
3
is formed in an upper portion of each suspension
2
so that core slider
6
of about 1 mm square is bonded. Although the prior automatic machine for installing core slider is required for manual working or for improvement of ordinary mounter, the machine is not yet complete as production equipment. In the automatic machine for installing core slider, know-how of temporarily hardening after applying adhesive or mounting more directly influences the quality of floating characteristics, and so on, compared with ordinary parts mounting apparatuses. It is considered that the machine does not exist even as equipment in the extended field of the prior art. In this respect, the prior art is merely a technique for mounting parts (molded package and pair chip) to board or tape (TAB) at high speed. In the automatic machine for installing a core slider, the process is divided into various steps, such as applying adhesive, mounting and temporarily hardening the adhesive. Batch processing for applying adhesive of predetermined quantity in one lot is used. However, there is not any stand-alone cell-type machine for performing the multiple steps.
Because the process is divided as described above and adhesive is applied by a dispenser in batch processing in the prior automatic machine for installing a core slider, it is possible that applying condition drifts according to the time difference between start and finish of applying the adhesive, with the result that the drift affects dispersion of applying quantity and change of viscosity. Mounting core sliders in the next process in that state causes greater deviation in mounting accuracy of core sliders. Due to the small-size core sliders, the influence becomes even greater. At this point, it is considered difficult to solve the above-described problems as far as the process is divided.
Further, a jig for manual working has a guide pin and a guide plane matching, respectively, to suspension
2
and core slider
6
. Process capability is determined by jig accuracy. However, stable accuracy is not guaranteed, and maintenance is required frequently because of high-accuracy, complex-shape jigs. Mechanization of the process where the process is divided causes improved equipment efficiency but makes the machine complex, high-cost, and difficult to maintain.
The present invention solves the above-mentioned prior problems. The object of the present invention is to provide a robot mounter which can process the steps of applying adhesive, and mounting or temporarily hardening the adhesive in a short time, and which is simple in construction, low-cost, and small in size. It is also an object of the present invention to provide a method of mounting core sliders using the robot mounter.
SUMMARY OF THE INVENTION
In accordance with an embodiment of the present invention, a robot mounter comprises a jig board holding a work having at least more than one portion to be bonded, a core slider accommodating portion, accommodating at least more than one core slider, and a robot head for picking, transferring and releasing the core slider by a chuck installed at the end portion. A core slider is picked and transferred from the core slider accommodating portion to a predetermined position of portion of the work to be bonded. A dispenser is installed at the robot head for applying adhesive to a predetermined position of portion of the work to be bonded, and a positioning unit is provided for adjusting the position after the core slider is set once on the way of transfer by the robot head. The present invention provides a robot mounter for picking and transferring the core slider. Position of the core slider is adjusted by the positioning unit again using the chuck of the robot head, the core slider is mounted on a spot radiating unit for temporarily hardening the adhesive while the work having the portion to be bonded is held by the chuck. The jig board is fixed at one end of a table, and the positioning unit and the core slider accommodating portion are formed on the moving path to the jig board of the robot head. The robot head is able to move freely on position coordinates of an upper flat surface of the table or in a three dimensional space on the table.
In the present invention, the jig board is set at one end of a turn table, the turn table is turned at a predetermined angle after the work is fixed, and then the jig board is held after being released from the turn table.
In the present invention, the robot mounter is installed on a one-body frame or a table support.
The present invention comprises steps of fixing a work having at least more than one portion to be bonded on a jig board, applying adhesive at a predetermined position of portion of the work to be bonded by a dispenser, picking and transferring the predetermined core slider from a core slider accommodation portion by a chuck of a robot head, installing once the core slider on a positioning unit, adjusting the position of the core slider, picking the core slider again, transferring the core slider to portion to be bonded of the work bringing the core slider to the portion to be bonded while the core slider is being picked, and temporarily hardening the adhesive by UV-radiating a spot radiating portion.


REFERENCES:
patent: 4866836 (1989-09-01), Von Brandt et al.
patent: 5499153 (1996-03-01), Uemura et al.
patent: 5612840 (1997-03-01), Hiraoka et al.
patent: 5-290490 (1993-11-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Robot mounter for mounting core slider does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Robot mounter for mounting core slider, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robot mounter for mounting core slider will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2445830

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.