Robot control system and method for introducing robot...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Robot control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S245000, C700S257000, C700S264000, C318S468000, C707S793000, C707S793000, C707S793000

Reexamination Certificate

active

06526332

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a robot control system which controls an articulated robot such as a legged walking type robot using a software program, and relates a method of introducing a robot control software program. Particularly, the present invention relates to a robot control system which controls, using a software program, an articulated robot which can substantially modify a hardware configuration when an operation unit such as a head unit or a limb unit is mounted, demounted, or interchanged, and relates to a method of introducing a robot control software program. More particularly, the present invention relates to a robot control system which controls an articulated robot using a software program formed of a combination of a software layer largely dependent on a hardware configuration and a software layer independent of the hardware configuration, and relates to a method of introducing a robot control software program. The present invention also relates to a robot control system which controls an articulated robot by dynamically modifying a combination of a hardware dependent software layer such as a middleware and a hardware independent software layer such as an application, and relates to a method of introducing a robot control software.
BACKGROUND ART
A machine that moves by means of electrical or magnetic effects mimicking the behavior of a human is called a “robot.” The term robot is said to be derived from Slavic word Robota (slave machine). In Japan, robots started to be widely used from the 1960s, and most of the robots were then industrial robots such as manipulators and conveyance robots for automating a production line in a plant or for use in an unmanned plant.
Research and development have advanced in moving legged walking robots that use feet in walking and stable walk control for the moving robots, such as pet-type or toy robots which imitate the living mechanisms and the behavior of quarupedalling animals such as the dog and the cat, and “human-like figured” or “human-type” robots (humanoid robots) which imitate the living mechanism and the behavior of human beings or apes. Expectations of commercializing these robots are currently mounting. The legged walking robot is unstable and presents more difficulty in posture control and walking control than crawling robots. However, the legged walking robot is excellent in that the legged walking robot is flexible in walking and running, for instance, going up and down the stairs, and striding over an obstacle.
An installed robot, such as a robot arm, which is firmly planted at a particular location, is used for the assembling and selection of parts in a limited and local work space only. In contrast, the work space of the moving robot is not limited. The moving robot moves along a predetermined track or freely on a non-tracked area, performing any or predetermined job conventionally manually done by humans. The moving robot thus provides various services, instead of the human beings, the dogs, and other living things.
One of the applications of the legged walking robots is a diversity of risky and difficult jobs in industrial and production activities. For instance, in place of human beings, the legged walking robots are expected to perform risky and difficult jobs such as maintenance work in nuclear power plants, thermoelectric power plants, and petrochemical plants, conveyance and assembly operation of parts in production plants, cleaning operations on high-rise buildings, and rescue activities in the site of a fire.
Besides the above job assisting applications, the legged walking robots may perform a job which may be closely related to the living environments of human beings, namely, “synergistic application” or “entertainment” applications. This type of robots emulates the behavior of human beings or a variety of expressions of legged animals having a relatively high intelligence, such as dogs (pets), using the four legs. The robot not only performs faithfully an operation pattern input beforehand, but also dynamically responds to words and actions of a user (or another robot) (such as “praising”, “chastising”, or “beating”). The robot is thus required to vividly respond to these actions and express their emotions.
Conventional toy machines offer fixed interactive relationship with a user operation, and cannot be modified according to the user's preference. As a result, the user may grow tired of the toy that simply repeats the same operation.
In contrast, intelligent robots have a behavior model and a learning model which responds to a stimulation, and thinks in a self-determining manner and performs operation control by determining a behavior by changing the model in response to information input from outside, such as a voice, an image, and tactile sensation. The robot, having an emotion model and an instinct model, behaves in a self-determining manner based on the emotion and the instinct of the robot itself. With an image input device and a voice input and output device, the robot performs an image recognition process and a voice recognition process. The robot thus communicates with humans in a realistic manner at a highly intelligent level.
The legged walking robots currently have an excellent information processing capability, and such intelligent robots may be regarded as one type of computation system.
The robots have a diversity of rules about action in the forms of an emotion model, a behavior model, and a learning model. The robot then determines a behavior plan in response to an external stimulation such as a user action in accordance with these models, and carries out the behavior plan through driving a joint actuator or voice output, thereby giving a feedback to the user. The operation control of the robot to determine and carry out the behavior plan is performed by executing a program code (such as an application) on a computation system.
As for the main difference between an ordinary computation system and a robot, the computation systems are not so different in the type and combination of hardware components (namely, a hardware configuration) forming the system from system to system. The robots are significantly different in hardware configuration from robot to robot. For example, there is a diversity of legged walking robots. One robot includes a torso unit, and as movable units, a head unit, limb units, and a tail unit which are fixed to the torso unit. Another robot may be formed of a head unit and wheels only.
In the computation systems which are relatively standardized in the installed hardware configuration from system to system, design of software program executed on the system is less subject to the system hardware. In contrast, in the robot, the control software for operating the hardware is much more dependent on the hardware.
Now, moving control of a robot is considered. During movement and walking, stability determination criteria are totally different between when movement means is moving feet and when the movement means is a wheel, or between when the movement means is bipedaling and when the movement means is quadrupedaling, and thus, operation environments under which an application is performed are different from system to system.
In view of the above point, if the software layer less dependent on hardware is discriminated from the software layer more dependent on hardware, the software of the robot is efficiently developed. Specifically, hardware independent software and hardware dependent software are individually developed, and a product lineup having a diversity of characteristics and performance levels is provided by combining both types of software.
The hardware independent software includes applications that perform processes such as those for the emotion model, the behavior model, and the learning model, which are loosely related to hardware operation. The hardware dependent software is a middleware composed of a group of software modules for providing a basic function of the robot. The construction of each module is dependent on hardwar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Robot control system and method for introducing robot... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Robot control system and method for introducing robot..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robot control system and method for introducing robot... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3175072

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.