Road vibration compensated angular rate sensor

Measuring and testing – Speed – velocity – or acceleration – Angular rate using gyroscopic or coriolis effect

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S504180

Reexamination Certificate

active

06305222

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to semiconductor sensing devices, and more specifically to compensation techniques for permitting controlled levels of vibration in such sensors while rejecting road vibration.
BACKGROUND OF THE INVENTION
Motion sensors have been widely used in a variety of applications including automotive control systems. Examples of such automotive applications include anti-lock brake systems, active suspension systems, active occupant restraint systems such as air bags and the like, and vehicle impact sensing systems, to name a few. In any of the foregoing systems, angular rate sensors are generally used to sense rotation of an automobile while accelerometers are generally used to sense acceleration/deceleration of an automobile.
In the past, electromechanical and electronic motion sensors or accelerometers have been used in automotive applications to detect automobile acceleration/deceleration. More recently, sensors that employ an electrically-conductive, micromachined plated metal or silicon sensing element have been developed which can be integrated with known semiconductor wafer processing techniques such as, for example, bipolar, CMOS, and BiCMOS processes. An example of a plated metal surface micromachined sensor is disclosed in U.S. Pat. No. 5,450,751 to Putty et al. which is assigned to the assignee of the present invention, and the contents of which are incorporated herein by reference. The Putty et al. device is formed in accordance with a metal plating technique in co-operation with a mold that defines a resonating ring and spring system affixed to the surface of a wafer. One variation of the Putty et al. sensor is disclosed in U.S. Pat. No. 5,547,093 to Sparks, which is also assigned to the assignee of the present invention and which is also incorporated herein by reference. The Sparks device is an electrically-conductive, micromachined silicon sensing element that is formed by etching a “sensing” chip from a single-crystal silicon wafer or polysilicon film on a silicon or glass carrier.
The Putty et al. and Sparks sensors each include a number of capacitive sites disposed about the perimeter of the ring structure, wherein the various capacitive sites serve as electrode interfaces to the sensor. Conductive runners on the sensing chip enable the electrodes to be electrically interconnected with appropriate signal conditioning circuitry and to provide a biasing voltage to the ring. In operation, some of the electrodes serve as “drive” electrodes that drive the ring to resonate when these electrodes are appropriately energized. Other electrodes serve as “balance” electrodes that, when energize, serve to balance the resonant peaks of the flexural movement of the ring by changing the electromechanical stiffness of the ring and springs. Still other electrodes serve as “sensing” electrodes that capacitively sense the proximity of the ring relative to these sensing electrodes. With the foregoing construction, the sensor is able to detect movement of the ring vibrational pattern toward and away from the sensing electrodes, which occurs in response to the angular velocity of the ring about its axis of rotation due to effects of the Coriolis force. Thus, when appropriately installed, the sensor is operable to sense rotation rate about any chosen axis of an automobile.
Sensors of the type just described are capable of precise measurements and are therefore desirable for use in automotive applications. However, the operation of such sensors can be adversely affected by certain environmental operating conditions as well as certain external stimuli. For example, a sufficiently large gap must exist between the electrodes and the sensing element ring to prevent shorting, yet this gap must also be sufficiently small to maximize the capacitive output signal of the sensor. Temperature sensitivities exist due to the narrowness of the gap required between the ring and the sensor's drive, balance and sense electrodes, the effects of which are compounded by the large length ratios between the ring and the electrode structures. The natural frequency of the ring is also affected by temperature, which can impact the scale factor response of the ring at resonance. U.S. Pat. No. 5,872,313 to Zarabadi et al., which is assigned to the assignee of the present invention and the disclosure of which is incorporated herein by reference, discloses a variation of the Putty et al. and Sparks sensor wherein the electrode structures are configured to reduce the sensitivity of the sensor to temperature variations.
As an example of the adverse affects of certain external stimuli on sensor operation, it is paramount that the level of vibration on the sensing element of the type just described be controlled while rejecting unwanted sources of vibration such as, for example, road vibration. Heretofore, typical road vibration rejection strategies involved the design and implementation of shock-absorbing sensor mounting structures. However, such mounting structures are generally bulky and expensive to implement. What is therefore needed is a technique for electronically compensating a ring-type angular rate sensor, as this type of sensor is described hereinabove, to thereby reject unwanted road vibrational effects.
SUMMARY OF THE INVENTION
The foregoing drawbacks of prior art motion sensors are addressed by the present invention. In accordance with one aspect of the present invention, a motion sensor comprises a sensing ring supported by a substrate, a first pair of diametrically opposed drive electrode structures defined on the substrate about the ring and defining a first axis therethrough, wherein the first pair of diametrically opposed drive electrode structures are adapted to receive sensor drive signals thereat, a first pair of diametrically opposed sense electrode structures defined on the substrate about the ring and defining a second axis therethrough normal to the first axis, and a first amplifier having an input coupled to each of the first pair of diametrically opposed sense electrode structures and an output defining a first output of the motion sensor.
In accordance with another aspect of the present invention, a motion sensor comprises a sensing ring supported by a substrate, a first pair of diametrically opposed drive electrode structures defined on the substrate about the ring and defining a first axis therethrough, wherein the first pair of diametrically opposed drive electrode structures are adapted to receive sensor drive signals thereat, a number of sense electrode structures defined on the substrate about the ring, and a first amplifier having an input coupled to at least some of the number of sense electrode structures and an output defining a first output of the motion sensor.
In accordance with a further aspect of the present invention, a method of minimizing road vibrational effects in a motion sensor having a sensing ring supported by a substrate and a number of electrode structures defined on the substrate about the ring, comprises the steps of configuring a first pair of diametrically opposed ones of the electrode structures as a first pair of drive electrodes adapted to receive sensor drive signals thereat, configuring a second pair of diametrically opposed ones of the electrode structures as a first pair of sense electrodes, wherein the first pair of sense electrodes define a first axis therethrough normal to a second axis defined through the first pair of drive electrodes, and summing sense signals produced by the first pair of sense electrodes at a first output of the motion sensor.
One object of the present invention is to provide an improved motion sensor that is insensitive to road vibrational effects without requiring anti-shock or anti-vibration sensor mounting hardware.
Another object of the present invention is to provide such an improved motion sensor that achieves road vibrational insensitivity via strategic placement of capacitive electrode pickoffs and strategic summing of sensor output signals.
These and other objects

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Road vibration compensated angular rate sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Road vibration compensated angular rate sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Road vibration compensated angular rate sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2555111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.