Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Patent
1992-02-28
1994-10-11
Schwartz, Richard A.
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
536 231, C12N 1511
Patent
active
053548558
ABSTRACT:
RNA enzymes or ribozymes can act as endoribonucleases, catalyzing the cleavage of RNA molecules with a sequence specificity of cleavage greater than that of known ribonucleases and approaching that of the DNA restriction endonucleases, thus serving as RNA sequence specific endoribonucleases. An example is a shortened form of the self-splicing ribosomal RNA intervening sequence of Tetrahymena (L-19 IVS RNA). Site-specific mutagenesis of the enzyme active site of the L-19 IVS RNA alters the substrate sequence specificity in a predictable manner, allowing a set of sequence-specific endoribonucleases to be synthesized. Varying conditions allow the ribozyme to act as a polymerase (nucleotidyltransferase), a dephosphorylase (acid phosphatase or phosphotransferase) or a sequence-specific endoribonuclease.
REFERENCES:
patent: 4987071 (1991-01-01), Cech et al.
"Designer Enzymes for Genetic Engineers" 113 New Scientist 35, 1987.
Pharmacia Catalog (1984), p. 35.
BRL Catalog (1983), p. 21.
Guerrier-Takada et al., 38 Cell 219, 1984.
Gerlach et al., 151 Virology 172, 1986.
Been et al., 239 Science 1412, 1988.
Cech, 236 Science 1532-1987.
Uhlenbeck, 328 Nature 596-600, 1987.
Sampson et al., "Characterization of Two RNA-catalyzed RNA Cleavage Reactions", Cold Spring Harbor Symposia on Quantitative Biology, vol. III, pp. 267-274 (1987).
Stryer, Biochemistry 3rd Edition, 1988.
Watson, Mol. Bio. of the Gene, 4 Edition, vol. II, 1987.
Lambowitz, 56 Cell 323, 1989.
Jarrell et al., 263 J. Biol. Chem. 3432, 1988.
Forster et al., 49 Cell 211, 1987.
Forster et al., 50 Cell 9, 1987.
Sharmeen et al., 62 J. Virology 2674, 1988.
Haseloff and Gerlach, 334 Nature 585, 1988.
Jacquier et al., 50 Cell 17, 1987.
Watson, Mol. Biol. of the Gene, 4th Edition, vol. I, 1987.
Rawn, Biochemistry, pp. 793-799, 1989.
Altman, "Ribonuclease P: An Enzyme with a Catalytic RNA Subunit", Advances in Enzymology and Related Areas of Mol. Biol., 1989.
Guerrier-Takada and Altman, "Catalytic Activity of an RNA Molecule Prepared by Transcription in vitro," Science, vol. 223, No. 4631, Jan. 1984, p. 285.
Bass and Cech, Biochemistry, vol. 25, pp. 4473-4477 Aug. 1986.
Bass and Cech, "Specific Interaction Between the Self-Splicing RNA of Tetrahymena and Its Guanosine Substrate: Implications for Biological Catalysis by RNA", Nature, vol. 308, No. 5962, pp. 820-826, 1984.
Been and Cech, "One Binding Site Determines Sequence Specificity of Tetrahymena Pre-rRNA Self-Splicing, Trans-Splicing and RNA Enzyme Activity," Cell, vol. 47, 207-216, Oct. 1986.
Been and Cech, "Sites of Circulation of the Tetrahymena rRNA IVS are Determined by Sequence and Influenced by Position and Secondary Structure", Nucleic Acids Research, vol. 13, No. 23, 1985, p. 8389 (Dec. 9, 1985).
BRL Catalogue, pp. 17, 20 and 21, 1985.
Burke et al., "Role of Conserved Sequence Elements 9L and 2 in Self-Splicing of the Tetrahymena Ribosomal RNA Precursor," Cell, vol. 45, 167-176, Apr. 1986.
Buzayan et al., "Satellite Tobacco Ringspot Virus RNA: A Subset of the RNA Sequence is Sufficient for Autolytic Processing," Proc. Natl. Acad. Sci. USA, vol. 83, pp. 8859-8862, Dec. 1986.
Cech, "A Model for the RNA-Catalyzed Replication of RNA," Proc. Natl. Acad. Sci. USA, vol. 83, pp. 4360-4363, Jun. 1986.
Cech, "Mechanism of Self-Splicing of the Ribosomal RNA Precursor of Tetrahymena," Proceedings of The Robert A. Welch Foundation Conferences on Chemical Research XXIX, Nov. 1985, Houston, Tex.
Cech, "RNA as an Enzyme," Scientific American, vol. 254, No. 11, Nov. 1986.
Cech, "Self-Splicing RNA: Implifications for Evolution," International Review of Cytology, vol. 93, pp. 4-22, 1985.
Cech, "The Generality of Self-Splicing RNA: Relationship to Nuclear mRNA Splicing," Cell, vol. 44, pp. 207-210, 1986.
Cech and Bass, "Biological Catalysis by RNA," Ann. Rev. Biochem., 1986, 55:599-629, Jul. 7, 1986.
Cech et al., "Secondary Structure of the Tetrahymena Ribosomal RNA Intervening Sequence: Structural Homology with Fungal Mitochondrial Intervening Sequences," Proc. Natl. Acad. Sci. USA, vol. 80, pp. 3903-3907, Jul. 1983.
Davies et al., "Making Ends Meet: A Model for RNA Splicing in Fungal Mitochondria," Nature, vol. 300, 23/30 Dec. 1982, p. 719.
Garriga et al., "Mechanism of Recognition of the 5' Splice Site in Self-Splicing Group I Introns," Nature, vol. 322, Jul. 1986, p. 86.
Guerrier-Takada et al., "The RNA Moiety of Ribonuclease P is the Catalytic Subunit of the Enzyme," Cell, vol. 35, pp. 849-857, Dec. 1983.
Hutchins et al., "Self-cleavage of Plus and Minus RNA Transcripts of Avocado Sunblotch Viroid," Nucleic Acids Research, vol. 14, No. 9, 1986, pp. 3627-3640.
Inoue et al., "Intermolecular Exon Ligation of the rRNA Precursor of Tetrahymena: Oligonucleotides Can Function as a 5' Exons," Cell, vol. 43, 431-437, Dec. 1985.
Inoue et al., "New Reactions of the Ribosomal RNA Precursor of Tetrahymena and the Mechanism of Self-Splicing," J. Mol. Biol., (1986) 189, pp. 143-165.
Inoue and Cech, "Secondary Structure of the Circular Form of the Tetrahymena rRNA Intervening Sequence: A Technique for RNA Structure Analysis Using Chemical Probes and Reverse Transcriptase," Proc. Natl. Acad. Sci. USA, vol. 82, pp. 648-652, Feb. 1985.
Kruger et al., "Self-Splicing RNA: Autoexcision and Autocyclization of the Ribosomal RNA Intervening Sequence of Tetrahymena," Cell, vol. 31, 147-157, Nov. 1982.
Marsh and Pace, "Ribonuclease P Catalysis Differs from Ribonsomal RNA Self-Splicing," Science, vol. 229, No. 4708, Jul. 1985, p. 79.
Michel and Dujon, "Conservation of RNA Secondary Structures in Two Intron Families Including Mitochondrial-, Chloroplast- and Nuclear-Encoded Members," The EMBO Journal, vol. 2, No. 1, pp. 33-38, 1983.
Perea and Jacq, "Role of the 5' Hairpin Structure in the Splicing Accuracy of the Fourth Intron of the Yeast Cob-Box Gene," The EMBO Journal, vol. 4, No. 12, pp. 3281-3288, 1985.
Price and Cech, "Coupling of Tetrahymena Ribosomal RNA Splicing to .beta.-Galactosidase Expression in Escherichia coli," Science, vol. 228, pp. 719-722, 1985.
Price et al., Nuc. Acids Res., vol. 13, pp 1871-1889, (Mar. 1985).
Prody et al., "Autolytic Processing of Dimeric Plant Virus Satellite RNA," Science, Mar. 1986, pp. 1577-1580.
Sullivan and Cech, "Reversibility of Cyclization of the Tetrahymena rRNA Intervening Sequence": Implication for the Mechanism of Splice Site Choice, Cell, vol. 42, 639-648, 1985.
Szostak, "Enzymatic Activity of the Conserved Core of a Group I Self-Splicing Intron," Nature, vol. 322, Jul. 1986, pp. 83-86.
Tanner and Cech, "Self-catalyzed Cyclization of the Intervening Sequence RNA of Tetrahymena: Inhibition by Intercalating Dyes", Nucleic Acids Research, vol. 13, No. 21, 1985, p. 7741.
Tanner and Cech, "Self-catalyzed Cyclization of the Intervening Sequence RNA of Tetrahymena: Inhibition by Methidiumpropyl EDTA and Localization of the Major Dye Binding Sites," Nucleic Acids Research, vol. 13, No. 21, 1985, p. 7759.
Waring and Device, "Assessment of a Model for Intron RNA Secondary Structure Relevant to RNA Self-Splicing A Review," Gene, vol. 28, No. 3, Jun. 1984, p. 277.
Waring, "Splice-Site Selection by a Self-Splicing RNA of Tetrahymena," Nature, vol. 321, May 1986, p. 133.
Waring et al., "Close Relationship Between Certain Nuclear and Mitochondrial Introns," J. Mol. Biol., (1983) 167, 595-605.
Weaver, et al., Proc. Natl. Acad. Sci., vol. 68, pp. 2994-2999, 1971.
Westheimer, "Polyribonucleic Acids as Enzymes," Nature, vol. 319, 1986, pp. 534-536.
Zaug et al., "Automcatalytic Cyclization of an Excised Intervening Sequence RNA is a Cleavage-Ligation Reaction," Nature, vol. 301, Feb. 1983, p. 578.
Zaug and Cech, "Oligomerization of Intervening Sequence RNA Molecules in the Absence of Proteins," Science, vol. 229, pp. 1060-1064, 1985.
Zaug et al., "Reactions of the Intervening Sequence of the Tetrahymena Ribosomal Ribonucleic Acid Precursor: pH Dependence of Cyclization and Site-Specific Hydrolysis," Biochemistry, 1985 vol. 24, No. 22, pp. 6211.
Zaug and Cech, Science, vol. 231, pp. 470-475, Jan., 1986.
Zaug et al., Science, vol. 224, pp. 574-578, May 1984.
Zaug and Cech, "The Tetrahym
Been Michael D.
Cech Thomas R.
Zaug Arthur J.
Choi Kathleen L.
Schwartz Richard A.
LandOfFree
RNA Ribozyme which cleaves substrate RNA without formation of a does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with RNA Ribozyme which cleaves substrate RNA without formation of a , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and RNA Ribozyme which cleaves substrate RNA without formation of a will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1659554