RJ type coaxial cable connector with visual indicator

Electrical connectors – Including or for use with coaxial cable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S607070, C439S676000

Reexamination Certificate

active

06290538

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electrical connectors and, more specifically, to RJ type connectors for connection of broadband coaxial cables.
2. Background Art
Broadband coaxial cables and coaxial cable connectors are commonly used for connecting an RF signal source to an RF signal receiver. Some common RF signal sources/receivers include, television and audio receivers, amplifiers, decoders, satellite receivers, VCRs and DVD players.
Prior art coaxial connectors include a female-type screw-on type connector or a female-type plug-on type connector which can be connected to a male-type connector. More specifically, the screw-on type connector includes a female receptacle having an internally threaded bore configured to threadedly mate with external threads of a male coaxial connector connected to, for example, an electronic product or the terminal end of a coaxial cable. A problem with the screw-on type coaxial connector is that the relative inflexible coaxial cable makes the screw-on type connector difficult to align and threadedly mate. The plug-on type coaxial connector includes a female receptacle having an inside diameter configured to frictionally interact with the external threads of a male coaxial connector. While the plug-on type coaxial connector is much easier to attach than the screw-on type coaxial connector, the plug-on type coaxial connector can be separated from the male coaxial connector simply by pulling the coaxial cable or the female receptacle from the male coaxial connector.
It is, therefore, an object of the present invention to overcome the above problems and others by providing a coaxial cable connector which can be easily, removably connected between a pair of coaxial cables or between a coaxial cable and a printed circuit board (PCB) while providing electromagnetic shielding of a signal conveyed on the core of the coaxial cable(s). Still other objects of the present invention will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description.
SUMMARY OF THE INVENTION
Accordingly, I have invented a coaxial cable connector including a plug body having a base and a neck at opposite ends thereof. A first conductive cylinder is received in the base and is configured to receive a conductive core of a coaxial cable therein. A conductive wire is in electrical contact with the first cylinder. The wire extends through the plug body from the first cylinder through the neck. A securing means secures the coaxial cable and the plug body together when the core is received in the first cylinder. A first shield surrounds at least the first cylinder for electromagnetically shielding the first cylinder. The first shield is electrically insulated from the first cylinder and the wire, preferably, by the plug body which is an electrical insulator.
The first shield can also surround the wire for electromagnetically shielding the wire. The first shield can include a conductive coating or sheet that is (i) disposed on the periphery of the base around the first cylinder, (ii) disposed on a periphery of the neck around the wire and (iii) disposed through the plug body between the neck and the first cylinder.
The securing means can include a sleeve assembly having an externally threaded, male coaxial connector on a first end thereof and a sleeve having a mouth which opens toward a second end thereof. The male coaxial connector has a conductive core that extends therethrough and includes a receiving cylinder adjacent the first end of the sleeve assembly and a wire projection that extends into a cavity defined by the sleeve. The external threads of the male coaxial connector and the sleeve are in electrical contact and are electrically isolated from the core of the male coaxial connector. The sleeve is configured to receive the base of the plug body when the wire projection of the male coaxial connector is received in the first cylinder. The sleeve is in electrical contact with the first shield when the base of the plug body is received in the sleeve.
The securing means can also include a plurality of enclosure sections configured to mate and form an enclosure that is configured to receive the base of the plug body therein with the neck extending therefrom. When the core of the coaxial cable is received in the first cylinder, the enclosure sections are mated and the enclosure sections clamp the coaxial cable therebetween.
The first shield can include a first conductive sheet supported by the plug body surrounding the first cylinder and the wire. A second conductive sheet can be supported by each enclosure section. The second conductive sheet of each enclosure section can electrically contact a conductive shield of the coaxial cable when the core of the coaxial cable is received in the first cylinder and the enclosure sections are mated. An electrically conductive spring is biased in electrical contact between the second conductive sheet of each enclosure section and the first conductive sheet.
Preferably, when the coaxial cable is received in the first cylinder, the enclosure and the plug body are rotatable with respect to each other around an axis coaxial with the core of the coaxial cable.
The first shield can electrically contact a conductive shield of the coaxial cable when the securing means secures the coaxial cable and the plug body together.
The connector can also include a housing body including a receiving aperture formed therein for receiving the neck of the plug body. A conductor is received in the housing body and is configured to electrically contact the wire when the neck of the plug body is received in the receiving aperture. A second shield surrounds the receiving aperture and the conductor for electromagnetically shielding the receiving aperture and the conductor. The second shield is electrically insulated from the conductor.
The conductor can extend from the receiving aperture through the housing body and can have an exposed end which extends outward from the housing body. The second shield can also include a shield wire having an exposed end which extends outward from the housing body.
The wire has an exposed end which extends outward from the neck of the plug body. The conductor received in the housing body can include a second conductive cylinder configured to receive the exposed end of the wire when the neck is received in the receiving aperture.
The second cylinder can extend through the housing body between the receiving aperture and an exterior of the housing body for receiving the core of another coaxial cable therein from the exterior of the housing body. The housing body can include a securing means for securing the other coaxial cable thereto when the core of the other coaxial cable is received in the second cylinder.
The first shield electrically contacts the second shield when the neck of the plug body is received in the receiving aperture of the housing body. The second shield electrically contacts a conductive shield of the other coaxial cable when the core thereof is received in the second cylinder.
A lamp, such as an LED device, can be disposed in the housing body of the connector and a lamp circuit can be electrically connected to the lamp, the conductor and the second shield. The lamp circuit connects the lamp to a source of electrical power in response to detecting between the conductor and the second shield a voltage greater than a predetermined trigger voltage. Hence, illumination of the LED device provides visual indication of a condition in a given circuit.
A filter circuit can be disposed in the housing body of the connector. The filter circuit can be electrically connected between the conductor and the second shield for filtering electrical signals propagating on the conductor. The filter circuit can be disposed in the same housing as the lamp and the lamp circuit.
I have also invented a connector for a coaxial cable. The connector includes a plug body having a first conductor extending therethrough which exposed adjacent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

RJ type coaxial cable connector with visual indicator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with RJ type coaxial cable connector with visual indicator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and RJ type coaxial cable connector with visual indicator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2484842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.