Rit method of making optical fiber having depressed index...

Glass manufacturing – Processes of manufacturing fibers – filaments – or preforms – Process of manufacturing optical fibers – waveguides – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C065S412000, C065S421000

Reexamination Certificate

active

06422042

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a method of making a glass article by fusing a rod and tube such that substantially no seeds are formed at the interface between them. The method of this invention is useful for making low loss optical fibers, especially those fibers in which the core includes an annular region of depressed refractive index relative to silica.
Optical fibers having refractive index profiles such as W-profiles, segmented core profiles, and the like possess desirable dispersion characteristics. See U.S. Pat. Nos. 4,715,679 and 5,031,131 for teachings of various kinds of dispersion modified optical fibers. Fibers having these kinds of refractive index profiles have often been made by chemical vapor deposition (CVD) processes such as plasma CVD processes that are capable of forming single-mode fibers the cores of which include layers of different refractive indices (see
FIGS. 7 and 8
, for example). Such processes produce relatively small preforms. It is advantageous to form dispersion modified optical fiber preforms by outside vapor deposition (OVD) processes which produce relatively large preforms or draw blanks in order to decrease the cost of making the fiber.
A typical OVD process for forming such fibers is disclosed in U.S. Pat. No. 4,629,485. In accordance with that patent, a germania-doped silica rod is formed and stretched to decrease its diameter. A piece of the rod is used as a mandrel upon which pure silica glass particles or soot is deposited. The resultant composite structure is heated in a consolidation (drying and sintering) furnace through which a fluorine-containing gas flows. The soot is therefore doped with fluorine and sinters on the rod. One or more additional layers of glass are formed on the outer surface of the fluorine-doped silica layer to form a blank from which a fiber can be drawn.
When soot is sintered in accordance with the aforementioned method, whereby fluorine is supplied to the porous preform solely by way of the fluorine-containing muffle gas, the fluorine concentration (as measured by the &Dgr; of the fluorine-containing layer) is not sufficient to provide certain desirable optical characteristics. The typical fluorine concentration acheived with muffle gas doping provides a −0.4%&Dgr; when SiF
4
is the fluorine-containing constituent. The maximum delta value for SiF
4
produced by the above-described process is −0.5%&Dgr;.
One aspect of the invention concerns a method of making an optical fiber preform an annular region of which consists of silica doped with a sufficient amount of fluorine that the delta value of the annular region with respect to silica is more negative than −0.5%&Dgr;.
As used herein, the term &Dgr;
a-b
, the relative refractive index difference between two materials with refractive indices n
a
and n
b
, is defined as
&Dgr;
a-b
=(
n
a
2
−n
b
2
)/(2
n
a
2
)  (1)
For simplicity of expression, &Dgr; is often expressed in percent, i.e. one hundred times &Dgr;. In this discussion, n
a
is the refractive index of the fluorine-doped glass and n
b
is the refractive index of silica.
Another aspect of the invention concerns the collapse of a tube of fluorine-doped and/or boron-doped glass onto a rod of core glass such that during the resultant fusion of the interface between those two members, substantially no seeds are formed.
When a fluorine-doped silica tube is collapsed onto a germania-doped silica rod, the resultant interface between those two members has heretofore contained many seeds, and much of the resultant preform or blank produces unusable optical fiber. Such seed formation is less prevalent when members formed of other glass compositions such as a germania-doped silica rod and a pure silica tube are fused to form a preform.
U.S. Pat. No. 4,668,263 discloses a method for collapsing a silica tube having a fluorine-doped inner layer onto the surface of a silica rod. In accordance with that patent the collapse step is accomplished by rotating the tube and heating it with the flame from a longitudinally travelling burner. That technique could not be employed to make dispersion modified fiber designs of the type that utilize the entire fluorine-doped tube, including the outer surface, as part of the core region or light propagating region of the fiber. The reason for this is that, since the flame wets the glass, i.e. introduces hydroxyl contamination, the resultant fiber would be rendered unsuitable for operation at wavelengths where attenuation due to hydroxyl ions is large. A further disadvantage of this method concerns the temperature of the flame, which is not lower than 1900° C. At such high temperatures, control of the process becomes difficult. The axis of the preform can become non-linear or bowed. If the core rod is a soft glass such as a germania-doped glass, the rod can become softer than the tube; this can result in an out-of-round core or a core that is not concentric with the outer surface of the resultant fiber.
U.S. Pat. No. 4,846,867 discloses a method for collapsing a fluorine-doped silica tube onto the surface of a silica rod. Prior to the tube collapse step, a gas phase etchant is flowed through the gap between the rod and tube while the tube is heated by a flame. In the specific examples, wherein SF
4
is the etchant, a gaseous mixture of SF
4
, Cl
2
and oxygen (ratio 1:1:6 by volume) is introduced through a gap between the rod and the tube. Such a gaseous mixture removes glass from the treated surfaces of the rod and tube, thus forming new surfaces at the rod/tube interface. The chlorine is present in an amount sufficient to remove water generated by the fluorine-containing etchant. The outer surface of the resultant preform is thereafter coated with silica soot particles that are dried, doped with fluorine and then sintered to form a blank from which an optical fiber is drawn. The flame that was directed onto the tube during the gas phase etching step introduces water into the outer surface of the tube. The attenuation of the fiber resulting from that water is high. The attenuation at 1380 nm for one example is 30 dB/km which is attributed to contact of the oxyhydrogen flame with the preform.
SUMMARY OF THE INVENTION
An object of the invention is to provide a method of joining first and second adjacent layers of a glass preform such that the interface therebetween is substantially seed-free. A further object is to provide an improved method of joining a core region to an adjacent region in a glass preform. Another object is to provide a method of making a rod-in-tube preform by the step of cleaning the adjacent surfaces of the rod and tube in such a manner that the outer surface of the tube does not become contaminated with water. Yet another object is to provide a method of forming a seed-free interface between a rod and tube in an optical fiber preform without removing glass from the adjacent surfaces of the rod and tube. Yet another object is to provide a method of making fluorine-doped silica glass having high negative delta by the OVD technique.
The present invention relates to a method of making a glass article. The method comprises inserting a non-porous glass core rod into a non-porous glass tube to form an assembly that is inserted into a furnace. While the entire assembly is being heated, a centerline chlorine-containing gas is flowed into the first end of the tube and between the tube and the rod, and out of the second end of the tube. Thereafter, the tube is collapsed onto the rod to form an assembly which can be formed into the glass article such as an optical fiber. The tube collapse step can be performed in the same furnace in which the chlorine cleaning step occurs.
As the adjacent surfaces of the rod and tube are cleaned by the centerline gas while the assembly is in a furnace, the outer surface of the tube is not contaminated by water that would be present if a flame were employed for heating the assembly during the cleaning step.
This method is especially suitable for forming an optical fiber having a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rit method of making optical fiber having depressed index... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rit method of making optical fiber having depressed index..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rit method of making optical fiber having depressed index... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2915016

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.