Rip strip primary tillage system

Earth working – Tool – standard or connection – Ridgers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C172S146000, C172S176000

Reexamination Certificate

active

06681868

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to an agricultural tillage implement, and more particularly to such an implement that represents a tillage system using a combination of coulters, tillage shanks, soil-gathering blades, and rotary reels, that produces an ideal tilled strip ready for planting seed with no additional passes. This single pass implement provides improved crop residue management and better soil tilth resulting in superior seedbed conditions.
Single-pass tillage implements providing both shallow and primary tillage in a single pass using disks and chisel points are also not generically new, as shown by U.S. Pat. Nos. 4,245,706; 4,403,662; and 4,538,689. These machines, however, do not create the best possible seedbed, i.e., do not create the soil conditions that best promote seed germination and plant growth.
During the late 1970's, before the machine shown in U.S. Pat. No. 4,403,662 became available, primary tillage was accomplished principally with moldboard plows. The moldboard plow leaves large slabs and chunks of soil that tend to break down during the freeze and thaw cycles of winter, but this type of plowing requires substantial working of the soil in the spring in order to level the field and prepare it for planting of the next crop. Moreover, moldboard plowing is not an effective remedy for soil erosion, and actually has a tendency to exacerbate this problem.
In recent years, farmers have recognized the long-term detrimental effects to the land characteristic of traditional farming techniques, and have been searching and experimenting for ways to decrease soil and wind erosion. The use of a large disk assembly in front of a chisel plow on a parabolic shank has gone a long way toward accomplishing these objectives and also breaks up the hard plow pan (or “sole”) that is created at the particular depth at which the plow is set to operate, caused by repeated tillage at the same depth over the years. The parabolic shank and winged point do reduce soil erosion, but this practice also may create large chunks of soil, and usually requires substantial spring soil working to prepare an adequate seedbed for planting.
During the 1970's, the cutter chisel was widely used. It consisted of a chisel plow with a row of coulters to cut the residue ahead of two rows of staggered shanks, generally on thirty-inch centers. These shanks had a four-inch twisted point attached to perform the primary tillage. The tip of the point was at approximately a 45° angle to the horizontal, sloping downwardly and forwardly from the shank. The worked soil followed the curvature of the generally C-shaped shank that was attached to the chisel plow and was twisted in order to provide a moldboard-type turning action. A C-shaped shank, of the type described, is shown in U.S. Pat. No. 4,403,662.
For early cutter chisel plows, there was a net lateral movement of soil. A machine with, for example, eleven shanks would be equipped with five right-hand and six left-hand twisted points. The result was that a wide groove and a large berm were left after a pass. The machine as shown in U.S. Pat. No. 4,403,662 was an improvement because it left a smaller groove and not as large a berm by using fore-and-aft sets of disks and an improved point.
In U.S. Pat. No. 4,538,689, there is disclosed a winged point mounted on a parabolic shank. That winged point, in the combination shown, creates a large, rough surface similar to the surface of the moldboard plow used during the late 1970's and early 1980's. The wings on these points are set at a soil lift, twist and roll angle of approximately 30°. This lift angle was conventional at the time, but it is an aggressive angle that causes the wings to lift the soil abruptly. In some soils, particularly more compacted soils, the combination of an aggressive lift angle on the wings of the point, together with a parabolic shank, that is designed to lift and heave soil, lifted larger soil chunks and threw them out of the paths of the chisel plow and away from cooperating disks, making it difficult to create a level soil surface after a pass of the machine.
During the 1980's, farmers began to desire less tillage to prepare for planting. The furrows left by the chisel shanks had to be filled with the berms that were created between each shank. In order to fill these furrows behind large parabolic shanks, smaller shanks were placed to run shallower and were located midway between the larger chisel shanks. This resulted in smaller grooves on reduced centers. With the development of the disk leveler shown in U.S. Pat. No. 5,080,178, the furrows behind the shanks were substantially filled without leaving sizeable grooves after the shanks had passed, thus improving the level or “smoothness” of the surface.
As today's farming operators are trying to combine multiple tillage operations into fewer passes, while maintaining or improving yields and reducing erosion, Crop Residue Management (CRM) has become a well-accepted practice. CRM is a year-round system beginning with the selection of crops that produce sufficient quantities of residue and may include the use of cover crops after low residue-producing crops. CRM includes all field operations that affect residue amounts, orientation and distribution throughout the seasonal period requiring protection. Tillage systems included, among others, under CRM are no-till, ridge-till, mulch-till and reduced-till. A change in tillage and planting operations to increase crop residues on the soil surface has been shown to produce crop yields generally equal to or higher than those produced by systems that leave little or no residue on the field after planting. However, more residue means fewer trips across the field, which translates to lower fuel bills, less soil compaction, and less wear and tear on equipment.
SUMMARY OF THE INVENTION
It is an object of the instant invention to provide an agricultural tillage implement employing a series of apparatus to perform one-pass primary tillage, called “Rip-Strip Tillage”, that fits within the definition of CRM practices. A coulter is the first apparatus that works the field. These disks cut the residue and loosen the solid ahead of the tillage shank. Next, tillage shank units run tillage points in the compaction layer, fracturing and further loosening the layer and relocating the soil particles, providing proper soil aggregate size and air pore space relationship throughout the shank tillage profile. Third is a pair of soil-gathering blades that capture and gather the loose solid and residue together and create a berm of a mixture of soil and residue. The last apparatus to work the field is a rotary reel, or row conditioning system, that conditions the strip of soil to give ideal seed-to-soil contact and uniform berm size. As used herein, primary tillage means deep soil plowing, in an approximate range of 8 to 14-inches or greater. Secondary tillage may be in an approximate range of 3 to 6-inches.
It is another object of the instant invention to provide an agricultural tillage implement that is designed to perform complete tillage of the soil in a single pass while leaving a raised-berm seedbed.
It is a further object of the instant invention to provide an agricultural tillage implement that supports the Crop Residue Management approach to farming.
These and other objects are obtained by providing an agricultural tillage implement employing a series of apparatus to perform one-pass primary tillage. A coulter is the first apparatus that works the field. These coulters part the residue without mixing it into the seedbed. Next, a tillage shank runs a point through the compaction layer to fracture and loosen the soil, providing proper soil aggregate size and air pore space relationship throughout the shank tillage profile. Next is a pair of soil-gathering blades that capture and gather the loose soil and residue together and to create a berm of a mixture of soil and residue. The last apparatus to work the field is a rotary reel that condition

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rip strip primary tillage system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rip strip primary tillage system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rip strip primary tillage system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200110

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.