Conveyors: power-driven – Conveyor section – Endless conveyor
Reexamination Certificate
2001-01-12
2003-01-14
Hess, Douglas (Department: 3651)
Conveyors: power-driven
Conveyor section
Endless conveyor
C198S817000, C198S597000, C198S840000
Reexamination Certificate
active
06505733
ABSTRACT:
TECHNICAL FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a transfer assembly and, more particularly, to a transfer assembly for transferring articles, such as boxes or the like, from a conveyor.
Transfer assemblies are typically positioned between two conveyor sections and adjacent one or two transfer conveyors for selectively transferring articles from one of the conveyor sections to one of the transfer conveyors. Transfer assemblies typically transport conveyed products 90° with respect to the conveying direction of the conveyor and preferably achieve this in as little a space as possible. As an article or product is conveyed in a conveying direction across the conveyor, the transfer assembly (when actuated) diverts the product from the conveying direction to the transfer direction, which is, as noted above, typically 90° to the conveying direction.
Conventional transfer assemblies include a plurality of rollers and a plurality of grooved sheaves, which are positioned between the respective rollers. The sheaves are oriented in a direction orthogonal to the conveying direction of the rollers and are often driven by the main line drive shaft of the adjacent conveyor sections. Extending around the groove sheaves are transfer belts, which are positioned by the groove sheaves between the rollers just below the conveying surface of the rollers. When a transfer is to take place, a group of the grooved sheaves is raised such that the transfer belts positioned in the grooved sheaves are raised between the rollers to lift the articles on the rollers off the rollers and to transfer them at right angles with respect to the rollers so that the articles can be deposited on one of the adjacent transfer conveyors. It should be understood that the term “90°” or “right angle” includes clockwise and counter-clockwise 90° directions.
In most applications, the transfer belts are raised under the article while the article is still moving. Since the article is moving at right angles to the transfer belt, the article induces lateral forces in the transfer belts. Typically, the transfer belts stop the forward motion of the article while transferring it laterally to the transfer conveyor. Depending on the size of the article being transferred and/or the shape of the article being transferred, their may be a tendency when the transfer belts engage the article for the lateral forces to induce the transfer belts to roll out of their respective grooved sheaves which results in increased wear of the transfer belts.
Consequently, there is a need for a transfer assembly which will limit the transfer belts from rolling out of their respective transfer sheaves to thereby enhance the longevity of the transfer belts.
SUMMARY OF THE INVENTION
The present invention provides a transfer assembly for positioning between two conveyor sections and one or more adjacent transfer conveyors which exhibits greater retention of the transfer belt in the transfer sheaves of the transfer assembly resulting in an increased life expectancy for the transfer belt, while maintaining sufficient engagement with the articles being transferred to transfer the articles.
According to one form of the invention, a sheave assembly for a transfer assembly includes a support member, a transfer belt, and a plurality of grooved sheaves which are mounted to the support member. Each of the grooved sheaves has a groove, with the transfer sheaves supporting the transfer belt in the grooves of the respective transfer sheaves. The support member includes at least one retainer to laterally retain the transfer belt in the grooves of the transfer sheaves when the transfer belt is subject to a lateral force from an article being transferred by the transfer belt.
In one aspect, the retainer comprises a bracket, which is supported by the support member. For example, the bracket may comprise a generally U-shaped bracket which straddles a respective grooved sheave. In another aspect, the bracket is supported at a respective grooved transfer sheave to thereby retain the transfer sheave in the grooves of the transfer sheaves.
In another aspect, the support member includes a plurality of the retainers. For example, the support member may include two transfer sheaves at opposed ends of the support member to define end grooved transfer sheaves, with the retainers located at the end grooved transfer sheaves. In this aspect, the retainers comprise generally U-shaped members. In further aspects, the retainers are mounted to the support member. For example, each of the grooved transfer sheaves may be mounted to the support member by an axle pin with the retainers mounted to the axle pins of the respective grooved transfer sheaves to thereby mount the retainers to the support member. In a further aspect, the support member supports two of the grooved transfer sheaves at opposed ends of the support member to define end grooved transfer sheaves. The retainers are mounted to each of the axle pins of the end grooved transfer sheaves to define end retainers.
In yet a further aspect, each of the end retainers comprises a U-shaped member, which includes opposed facing side members. The opposed facing side members include mounting openings for receiving the axle pin of a respective end groove transfer sheave. At least one of the mounting openings of the opposed facing side members comprises an L-shaped slot. In preferred form, both of the mounting openings comprise L-shaped slots whereby the retainer can be installed after the respective end grooved transfer sheaves are mounted to the support member.
According to another form of the invention, a sheave assembly of a transfer assembly includes a support member, a transfer belt, and a plurality of grooved transfer sheaves. The grooved transfer sheaves are mounted to the support member, with the transfer sheaves supporting the transfer belt. The support member includes at least one bracket to laterally retain the transfer belt in the transfer sheaves when the transfer belt is subject to a lateral force from an article being transferred by the transfer belt.
In another aspect, a first pair of the grooved transfer sheaves are mounted to opposed ends of the support member to define end transfer sheaves. A second pair of the transfer sheaves are mounted to an intermediate portion of the support member to define intermediate transfer sheaves. Another transfer sheave is mounted to the support member at an intermediate portion of the support member, but which is offset from the intermediate transfer sheaves to define an offset sheave. The transfer belt extends over the end transfer sheaves and over the intermediate sheaves and around the offset sheave to thereby form a loop around the offset sheave.
In a further aspect, the support member includes at least two brackets, with one of the brackets being located at one of the end transfer sheaves to define an end bracket and another of the brackets being located at the intermediate sheaves to define an intermediate bracket to thereby retain the transfer belt in the grooved transfer sheaves. In yet a further aspect, the transfer sheaves are mounted to the support member by axle pins, with the intermediate bracket being mounted to the axle pin of a respective intermediate transfer sheave. The intermediate bracket comprises an elongate plate member having a pair of mounting openings for mounting to the axle pins of the intermediate transfer sheaves to thereby extend over the loop of the transfer belt and to laterally retain the transfer belt in the grooved transfer sheaves.
In another aspect, the end bracket comprises a U-shaped bracket which straddles the respective end transfer sheave.
According to yet another form of the invention, a transfer assembly for a conveyor system includes at least two conveying surfaces defining a conveying direction, a plurality of grooved transfer sheaves positioned between the conveying surfaces, and a transfer belt extending over the grooved transfer sheaves. At least one of the grooved transfer sheaves is driven and drives the transf
Ranschaert Ryan
Troupos Chris A.
Hess Douglas
Rapistan Systems Advertising Corp.
Van Dyke Gardner, Linn & Burkhart, LLP
LandOfFree
Right angle power transfer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Right angle power transfer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Right angle power transfer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3024666