Ventilation – Having outlet airway – Along roof ridge
Reexamination Certificate
2001-04-02
2002-04-16
Wilson, Pamela (Department: 3749)
Ventilation
Having outlet airway
Along roof ridge
C052S094000
Reexamination Certificate
active
06371847
ABSTRACT:
TECHNICAL FIELD
This invention relates generally to attic ventilation and more specifically to ridge vent systems for ventilating an attic space through and elongated opening along the ridge of a roof.
BACKGROUND
It is an important consideration when designing modern buildings such as homes and offices that the attic space of the building be well ventilated. Such ventilation reduces the searing heat that can build up in the attic during summer months and substantially reduces cooling costs and other problems associated with such heat. Numerous devices have evolved over the years for providing attic ventilation. Such devices include simple gable vents to provide cross ventilation, passive roof vents located at strategic positions along the slop of a roof, and active roof ventilation systems, which traditionally include thermostats that activate fans above a predetermined temperature to force hot air out of the attic.
More recently, ridge ventilation or ridge vent systems have become popular for ventilating the attic space of a building. Ridge vent systems generally include a long opening formed along the apex or ridge of a gable roof through which hot air, which naturally rises, can escape the attic. A long ridge vent assembly spans the length of and covers the opening and is designed to allow air to escape while preventing rain water from entering through the opening along the ridge. Early ridge vents were simple corrugated covers that were attached to the roof covering the ridge opening with traditional ridge cap shingling being applied over the covers.
Recently, more sophisticated ridge vents have been developed. Many of these more sophisticated vents include injection molded vent sections that are attached to the roof end-to-end to span and cover the opening along the open ridge of the roof. The vent sections generally have transversely flexible center panels flanked along either edge with a vent grate. The center panel is held a short distance above the roof by depending supports to define a space between the panels and the roof and the vent grates extend generally downwardly from the edges of the panels to engage the roof. Some systems include upstanding wind baffles outboard of the vent grates. These baffles generate low-pressure vortices in the region of the vent grates as a breeze blows across the roof to draw hot air from beneath the vent sections to ventilate the attic. Once installed, ridge cap shingling is installed over the center panel portions of the ridge vent sections. Since rain water can collect in the trough between the vent grates and the wind baffle, many ridge vents are provided with weep holes located at intervals along this trough to allow the water to escape and flow down the roof.
While modern ridge vent systems are an improvement over early ridge vents, they nevertheless are plagued with a variety of problems and shortcomings inherent in their respective designs. For example, since the individual ridge vent sections that form the long ridge vent are attached to the roof one at a time and simply positioned against an adjacent section, they can easily be attached in such a way that their ends do not meet well and gaps are formed at the junctions between adjacent sections. This can result in a skewed or otherwise non-straight final vent assembly and can lead to leaks at the junctions between the vent sections. Further, the careful alignment and attachment of the ridge vent sections to the roof can be a tedious and time consuming task requiring some skill to master. This is undesirable for roofers, who generally desire to work as fast as possible.
Other problems with existing ridge vent systems include the tendency of rain water to be blown through the weep holes, through the vent grates, and into the open ridge of the roof during rain storms or other blowing rains. Also, since the vent sections are supported from three-quarters of an inch to an inch above the roof, standard roofing nails are not long enough to attach the sections to the roof. Special long nails are required. This means that a roofer must stock a supply not only of standard roofing nails but also of long roofing nails for attaching the ridge vent sections to the roof and for attaching ridge cap shingles atop the ridge vent. This can be a problem if, for instance, a roofer forgets to stock the special nails or runs out during installation of the ridge vent sections. The entire roofing project can be held up in these circumstances until a supply of the special long roofing nails can be obtained. Finally, even when the vent sections are carefully joined together, water leaks can still occur at the junctions between the vent sections, especially as the ridge cap shingles age and begin to leak.
Accordingly, there continues to exist a need for an improved ridge vent system that addresses and solves the problems associated with current systems. Such an improved system should be easier and quicker to install than current systems, should eliminate water leakage at vent section junctions and through the weep holes of the vent sections, and should eliminate the need for roofers to stock and maintain special roofing nails designed to attach the vent sections to a roof. It is to the provision of such an improved ridge vent system that the present invention is primarily directed.
SUMMARY OF THE INVENTION
Briefly described, the present invention, in one preferred embodiment thereof, comprises a unique and improved ridge vent system for ventilating the attic space beneath the roof of a building. The ridge vent system is designed to span and cover the open ridge of the roof and is formed from a plurality of elongated preferably injection molded ridge vent sections having ends. The ridge vent sections are sized to cover and extend the length of the open ridge of a roof when the sections arrayed end-to-end along the ridge. Each ridge vent section is formed with a laterally flexible central panel having edges and a width sufficient to cover the open ridge of a roof. Support ribs project downwardly from the central panel for supporting the central panel above and spaced from the roof. A ventilation grid extends along at least one edge and preferably both edges of the central panel for allowing air to escape from beneath the central panel to ventilate the attic space beneath the roof. Upstanding wind baffles flank the ventilation grids for creating low pressure vortices during a breeze to draw air through the ventilation grids for enhancing ventilation of the attic.
Attachment means are formed on the ends of each ridge vent section for attaching a plurality of ridge vent sections together in end-to-end relationship to form a ridge vent structure sufficiently long to extend the length of and cover the open ridge of the roof. In the preferred embodiment, the attachment means comprises a pair of tabs projecting from end of each ridge vent section and a corresponding pair of slots formed on the other end of each ridge vent section for receiving the tabs of an adjacent ridge vent section. Mating latches are formed on the ends of the ridge vent sections to lock the sections together when the tabs of one section are fully received in the slots of an adjacent section. Thus, the sections can be joined and locked securely together in end-to-end relationships.
Drain means in the form of a laterally extending trough is formed on one end of each ridge vent section. The trough is sized and positioned such that it underlies the junction between its vent section and an adjacent vent section when the sections are joined together. In the event of water seepage at the junction, the water is captured in the trough underlying the junction and directed laterally to the edges of the section and away from the open ridge of the roof. In this way, if a leak develops in the ridge cap shingles, water does not leak through the ridge vent system and into the attic.
Each ridge vent section is further formed with end walls that project downwardly from the central panel of the vent section adjacent each end thereof. The end walls isolate t
Boles Derek S.
Wilson Pamela
Womble Carlyle Sandridge & Rice
LandOfFree
Ridge ventilation system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ridge ventilation system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ridge ventilation system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2844195