Ribbon drive power generation apparatus and method

Rotary kinetic fluid motors or pumps – Plural runners supported for relative motion or on separate...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S072000, C415S073000, C415S075000, C415S131000, C416S177000

Reexamination Certificate

active

06357997

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to an apparatus for producing hydroelectric power using a ribbon drive mechanism. More particularly, the present invention is a ribbon drive shaped as a spiral ribbon over a cylinder for causing incoming water to turn the axle upon which the ribbon drive is mounted, thereby imparting motion to a number of possible means of electrical power generation.
BACKGROUND OF THE INVENTION
The United States and other countries are facing an ever increasing spiral of demands for electric power. Coal powered electric power generation facilities, while relatively cost-effective, nevertheless present a number of adverse environmental issues from an air and water standpoint as well as from a mining standpoint. Nuclear powered electric power generation facilities, while capable of producing significant amounts of electric power, are extremely expensive to build and to operate and represent, to many communities, the ever present danger of a Three Mile Island/Chernobyl type nuclear catastrophe with all of its associated environmental hazards and life-threatening situations.
Solar power electric generation facilities, while promising from an environmental impact standpoint, are unlikely to be able to generate significant portions of the vast amounts of power needed presently and in the future given the present state of this particular technology.
Hydropower generation offers one of the more promising power generation opportunities through its use of a renewable resource. However, current hydropower generation techniques involve: the expenditure of vast amounts of capital to construct large dams; the flooding and rendering unusable of large areas of land to contain the vast amounts of water required for this type of power generation. In addition, insufficient water depth, water volume, and speed of water flow are factors which significantly limit the areas in which current hydropower generation can be employed. With these limitations in mind, there are numerous areas of the country and of the world which have water resources that could be used to generate hydropower in large amounts if these impediments could be overcome.
One method of overcoming these impediments is to pump water from low areas to higher areas of elevation to allow the water to be concentrated in a series of relatively small reservoirs to allow the energy of falling water to be harnessed for hydropower generation purposes. The current technology of power generation devices is dependent on large bodies of water to supply the energy and it would be virtually impossible for such devices to take advantage of this reservoir concept in order to broaden their list of possible power generation sites. Clearly, there is an acute need for the development of new hydropower generation techniques that will support the employment of generation facilities previously not considered viable for this type of effort. Hydropower generation systems have long been the subject of various inventions. For example, U.S. Pat. No. 5,451,137 to Gorlov was issued for a reaction turbine. The turbine was comprised of a working wheel with a plurality of airfoil-shaped blades mounted transversely to the direction of fluid flow for rotation in a plane parallel to the fluid flow located in a tubular conduit. The blades were arranged in a helical configuration which ensured that a portion of the blades were always positioned perpendicular to the fluid pressure thereby ensuring a continuous speed of rotation with no accelerations or decelerations. However, the frequency of the repeating blades remained constant throughout the length of the conduit.
U.S. Pat. No. 5,997,242 was issued to Hecker et al. for a hydraulic turbine. This invention disclosed a rotatable turbine runner with a circumferential inlet for receiving fluid and an axial outlet for discharging the fluid. The turbine also includes a conical-shaped hub rotatable about a central axis, the hub having a diameter that decreases in size from the inlet to the outlet, the conical-shaped hub including a base having a circumference adjacent to the inlet and a surface sloping inwardly toward the central axis. The turbine runner also includes at least two helical turbine blades connected to the conical-shaped hub, each turbine blade having a leading edge adjacent to the inlet, a trailing edge adjacent to the outlet, and a blade running the length therebetween having a pitch. However, once again, the frequency of the repeating blades remained constant throughout the length of the conduit.
U.S. Pat. No. 6,036,443 was issued to Gorlov for a helical turbine assembly operable under multidirectional gas and water flow for power and propulsion systems. The turbine was comprised of an array of helical turbine units or modules arranged, vertically or horizontally, to harness wind or water power. Each turbine unit or module was comprised of a plurality of helical blades having an airfoil profile. In one embodiment, a cylindrical distributor was provided to channel the fluid flow to the blades of the turbine. Again, the frequency of turbine blades remained constant throughout the length of the conduit.
While these various systems represent inventive approaches to hydropower generation, they do not overcome the limitations and impediments currently found in hydropower generation efforts, namely: the requirement for expenditure of vast amounts of capital to construct large dams; the flooding and rendering unusable of large areas of land to contain the vast amounts of water required for this type of power generation; and the restriction of power generation facilities to those areas having sufficient water depth, water volume, and speed of water flow to support hydropower generation using currently available technologies.
Therefore, what would be useful would be a system capable of overcoming these limitations and allowing hydropower generation at a lower cost of facilities construction, with less loss of land due to the flooding required, and able to operate in areas previously considered unsuitable for hydropower generation due to insufficient water depth, insufficient water volume, and/or insufficient speed of water flow.
The present invention is just such a system that differs significantly from the inventions discussed above. The present invention generally comprises a ribbon drive power generation apparatus enclosed in a containment tube, thereby giving an extremely focused flow of the water available upon the vanes of the ribbon drive power generation apparatus.
SUMMARY OF THE INVENTION
As discussed more fully below, the ribbon drive power generation apparatus consists of a ribbon-like curved shape, composed of metal or other suitable material, attached to a central axle with the complete apparatus being contained in a tube having a constant diameter for the length of the tube.
It is an object of the present invention to create a hydropower generation system that involves significantly decreased outlays of capital for facilities construction compared to that presently required.
It is a further object of the present invention to create a hydropower generation system that requires a significantly less volume of water for operation thereby resulting in decreased flooding and rendering unusable of large areas of land to contain the vast amounts of water required for current technologies to operate.
It is a further object of the present invention to create a hydropower generation system that will function in areas where water depth, water volume, and/or speed of water flow are insufficient to support current technology hydropower generation systems.
It is yet another object of the present invention to provide a system and method useful for enabling hydropower “peak shaving” of electrical power needs.
The ribbon drive generation apparatus of the current invention is comprised of a ribbon-like curved shape, composed either of metal or other suitable material, attached to a central axle with the complete apparatus being contained in a tube having a constant diameter for the le

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ribbon drive power generation apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ribbon drive power generation apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ribbon drive power generation apparatus and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2835843

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.