Surgery – Blood drawn and replaced or treated and returned to body – Constituent removed from blood and remainder returned to body
Reexamination Certificate
1999-12-28
2003-04-22
Mendez, Manuel (Department: 3763)
Surgery
Blood drawn and replaced or treated and returned to body
Constituent removed from blood and remainder returned to body
C604S004010, C604S006010
Reexamination Certificate
active
06551266
ABSTRACT:
FIELD OF THE INVENTION
The invention relates generally to the treatment of various disorders caused by or associated with relatively elevated levels of certain high molecular weight blood plasma components, particularly those rheologically active macromolecules that generally are larger than about 500,000 Daltons (500 kDa) in weight or greater than about 200 Å in diameter. Elevated levels of such plasma constituents are found in chronic, age-related, degenerative, and/or inflammatory diseases associated with the accumulation of and/or deposition of biological substances that result in or are associated with disturbances of blood rheology, extra-cellular matrix composition, and intrinsic endothelial cell function. The invention relates specifically to Rheopheresis® blood filtration treatments, and associated membrane differential filtration devices, methods, treatment apparatus and systems for such diseases, and more particularly to the treatment of atherosclerotic and/or thrombotic diseases such as coronary, renal, peripheral and cerebrovascular diseases as well as perfusion deficit diseases such as Age-related Macular Degeneration (AMD), Diabetes, Rheumatoid Arthritis and Alzheimer's Disease. Such methods include but are not limited to VasoTherapy™ and AngioTherapy™ using the RheoFilter AR 3000 and RheoFilter AR 4000 hollow fiber membranes respectively. Thus, for the purposes of this application, as will be evident from the context, the term “rheopheresis” applies broadly to each of methods and filters collectively, although they include different products, are directed toward different disease manifestations and are studied, labeled, tested, approved, utilized and reimbursed differently.
BACKGROUND OF THE INVENTION
Circulating blood components that are suspended in or dissolved in the plasma can be loosely classified into (1) small (low molecular weight compounds), (2) medium or “middle molecules” and (3) large (high molecular weight compounds). The relationship between the size and weight of these compounds is determined by: (1) their density, which is directly related to the three-dimensional conformational structure (protein folding) of the isoform expressed and (2) their biologically active form (monomer vs. multimer). Small plasma compounds are typically less than 75 Å in their shortest axis diameter and have low molecular weights generally less than about 120,000 Daltons (120 kDa). Middle molecules occupy the range roughly from about 75 Å to 150 Å in their shortest axis diameter, weighing 120 kDa to 500 kDa. Large plasma components are those typically larger than about 150 Å in their shortest axis diameter weighing generally greater than 500 kDa.
Typical low molecular weight moieties include substances such as albumin (69 kDa) and certain cytokines such as tumor necrosis factor (TNF- alpha) and certain growth factors (VEGF, TGF- beta, etc.). Middle molecules may include the gamma immune globulins (~125 kDa) and similar-sized particles. The high molecular weight group includes the “rheologically active macromolecules” (RAM) compounds such as the alpha-2 macroglobulin tetramer (~900 kDa), lipoproteins A and B, cholesterol isoforms (VLDL, LDL, IDL, etc) and other beta lipoproteins(~850 kDa), fibrinogen, IgM, and many others. Many of these compounds can exist in numerous related isoforms, such as racemers, enantiomers, oxidized and reduced forms, and so on. Frequently, the biologically active state of plasma component particles is conferred in multimeric conformations such as IgA pentamers, TNF- alpha dimers, vitronectin 16-mers and von Willebrand trimers. Often their biological activity will change depending upon the isoform expressed. They are often categorized into groups, classes, families, and superfamilies.
Many high molecular weight RAM compounds are associated with various diseases that may be treated according to the methods of the present invention.
1. Diseases Associated with High Molecular Weight Compounds in the Plasma
Historically, diseases have been classified as being either ‘acute’ or ‘chronic’ in nature. Recently it has been determined that many chronic illnesses, especially some age-related, degenerative, and inflammatory diseases, result from pathologies involving either: (1) a slowly progressive, chronic, time-dependent accumulation of biological moieties into tissues comprised, in some cases, of metabolic debris, or (2) in other cases of the rapid, acute, up-regulated overproduction of these same substances where they can exhibit acute phase reactant behavior.
Irrespective of their origin, mechanism of formation or temporal generation, in those disease states referenced above, these biological products have a tendency to collect within peri-endothelial, capillary, interstitial, and extracellular matrix tissues. Although they are typically distributed across all three body compartments (intravascular, interstitial and intracellular), depending upon their equilibrium constants and the homeostatic disruption, they will often manifest as increased plasma or serum concentrations within the blood circulation itself. Often, these biological compounds are further modified by acetylation, glycation, oxidative or other processes to form less stable isoforms that condense into complex aggregates (atherosclerotic plaques, drusen, neurofibrillary tangles, lipofuscin, amyloid, etc.). Although these aggregates are comprised primarily of proteinaceous moieties, they also contain lipids, lipoproteins, fatty acids, carbohydrates, metals and other non-protein compounds. Thus, the terms “protein accumulation-deposition diseases” or “dysproteinemias” as has been historically applied to these conditions, is technically a misnomer. Therefore, for the purposes of this application, the term “RAM accumulation-deposition diseases” will be substituted for clarification where appropriate.
Saturated catabolic mechanisms predispose RAM to progressive concentration increases within the blood that primarily and secondarily induce numerous functional disturbances of the endothelium, blood rheology, extra-cellular matrix, microcirculation and/or microperfusion. Elevated serum levels of RAMs have been documented to: (1) cause increases in whole blood and plasma viscosities thus reducing blood flow; (2) promote cell-cell adhesion causing thrombosis, cell clumping and diapedesis; (3) disrupt numerous intrinsic endothelial cell functions, and (4) cause numerous other pathologies which can promote various disturbances in the microcirculation. Such actions are measurable as decreases in capillary perfusion, endothelial cell rupture, atherogenesis, thrombosis, angiogenesis, and other pathological states leading to ultimate end-organ dysfunction or outright failure. Occasionally, primary rheologic pathologies can be so significant that the disturbances can be observed even within the systemic circulation forming procoagulant states and in the extreme - hyperviscosity syndromes, diffuse intravascular coagulation, etc.
Some examples of medical conditions that may be classified as RAM accumulation-deposition diseases are:
Atherosclerotic disease which develops as a result of progressive endothelial cell dysfunction in the presence of progressive deposition of lipid-laden plaques that form preferentially within the intimal walls of coronary, renal, carotid, aortic and certain other arteries throughout the body, often in the presence of hyperlipidemia.
Rheumatoid arthritis which results from the destructive inflammatory reactions occurring in a synovial pannus associated with elevated serum levels of Rheumatoid Factor, various inflammatory proteins, immunologic globulins, integrins, and other compounds, including the chemotactic attraction of activated inflammatory cells, that contribute to the dysfunctional synovial lining of the various joints involved;
Diabetes mellitus which is classically described as an autoimmune disease demonstrating profound pathological effects on the microcirculation and peripheral nervous system, with classically observed disruptions
Mendez Manuel
Morgan & Lewis & Bockius, LLP
Occulogix Corporation
LandOfFree
Rheological treatment methods and related apheresis systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rheological treatment methods and related apheresis systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rheological treatment methods and related apheresis systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3054661