Rh blood group antigen compositions and methods of use

Chemistry: analytical and immunological testing – Composition for standardization – calibration – simulation,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S518000, C436S531000, C436S532000

Reexamination Certificate

active

06551830

ABSTRACT:

1. BACKGROUND OF THE INVENTION
1.1 Field of the Invention
The present invention relates to the fields of protein chemistry and hematology. More particularly, the invention discloses novel compositions comprising solid-phase, i.e., bound, forms of immunologically-active Rh antigen. Also disclosed are diagnostic kits and devices for the detection and quantitation of Rh antibodies in clinical and non-clinical samples. In another aspect, the invention relates to devices, compositions and methods for the isolation, identification, quantitation, and purification of anti-Rh antibodies from solution.
1.2 Description of the Related Art
1.2.1 Rh Antigens
The Rh blood group system is one of the most complex polymorphisms in humans. Human red blood cells (RBCs) may be subdivided into Rh
+
and Rh

groups according to the presence or absence of the major Rh blood group antigen, Rhesus D (Rh
o
D) (Cartron and Agre, 1993). Several genes have been implicated as encoding the major Rh antigen epitopes, D, C, c, E, and e, while a host of others are speculated to be involved in the determinants of a host of rare alleles.
Rh antigens, including Rh
o
D, are carried on an integral membrane protein which has a molecular weight of approximately 30 kDa (Moore et al. 1982; Gahmberg, 1982; 1983). This protein has been implicated in the molecular adhesion of the submembranous cytoskeleton to the erythrocyte cell membrane (Ridgwell et al., 1984), and persons lacking the proteins exhibit Rh Deficiency Syndrome, accompanied by varying degrees of hemolytic anemia (Marsh, 1983).
Paradis et al. (1986) demonstrated that the presence of the cytoskeleton in isolated Rh
o
D antigen preparations served as a protective effect on the immunologic activity of the Rh antigen.
1.2.2 Hemolytic Disease of the Newborn (HDN)
The RBC antigen system in humans is the basis for the disease called Hemolytic Disease of the Fetus/Newborn. This disorder is manifested when an Rh

woman becomes pregnant by an Rh
+
man. The fetus is statistically likely to be Rh
+
and during gestation or at birth, Rh
+
fetal RBC can enter the maternal circulation and the woman then has a high probability of developing an anti-Rh antibody response against the transferred RBC. In subsequent pregnancies, the IgG form of the antibody crosses the placenta and enters the fetal circulation where it binds to fetal Rh
+
RBC and thereby causes them to be rapidly removed from circulation in liver and spleen. The first child is rarely affected since the mother has not yet developed the antibodies, but all subsequent fetuses are at risk for disease if the mother is not appropriately treated.
The current treatment for this condition is strictly preventive. The strategy is to attempt to keep the woman from initially developing anti-Rh antibodies. This is done by administering 300 &mgr;g of an immunoglobulin (Ig) preparation that contains anti-Rh antibodies at 28 weeks of gestation and again within 72 hr of birth. This is highly effective in preventing the disease when the patient comes in early for prenatal care. Unfortunately, large numbers of women do not obtain proper prenatal care for various reasons and go on to develop strong anti-Rh immune responses. For these women, in utero transfusion of the fetus under ultrasound guidance is the only current treatment available for high-risk cases when the woman has previously developed a strong immune response against the Rh antigen. Because eighty-five percent of the Caucasian population is Rh+, a considerable number of women and their offspring are potentially at risk for contracting the disease.
1.2.3 Attempts to Isolate Active Solid-Phase Rh Antigen have Failed
Unfortunately, attempts to isolate active Rh antigen have been disappointing, and no successful attempts at preparing bound forms of the antigen have been reported. Indeed, a definitive review (Agre and Cartron, 1991) reported that Rh antigenic activity was lost after membranes are solubilized or transferred onto immunoblot membranes, and most biochemical methods therefore actually kill the antigenic activity that identifies and defines the Rh antigen.
Moore et al. (1982) and Plapp et al. (1979) each reported isolation of small amounts of Rh antigen after affinity chromatography of deoxycholate solubilized RBC. Plapp et al. (1979) solubilized the cells in deoxycholate, added the mixture to an affinity column made of immobilized anti-Rh antibodies and eluted the bound fraction. The resulting eluate was active in inhibition of a reaction between Rh
+
RBC and antibody. Disappointingly, however, extracts from both Rh
+
and Rh

cells inhibited the reaction, with the authors postulating that Rh antigen was merely “hidden” in Rh

cells.
That conclusion, however, was disproved when modem molecular biology methods conclusively showed that Rho(D) antigen is not present in Rh

cells (Agre and Cartron, 1991), and that the Rh antigen polypeptides had molecular weights of between 28 and 32 kDa (Agre and Cartron, 1991). Clearly the 7 kDa polypeptide reported by Plapp and coworkers could not be the Rh antigen polypeptide.
Moore et al. (1982) surface-labeled RBC with
125
I, reacted the labeled cells with anti-Rh antibodies, washed the cells and dissolved them in deoxycholate. This was passed over a protein A-Sepharose column and complexes were isolated after elution. Although they were successful in detecting Rh antigen in acrylamide gel separations of eluted complexes by autoradiography, the amount of Rh protein isolated by their method was too low to provide definitive analysis of Rh protein. In fact, the quantities were so small, that no inhibition assays could be performed to ascertain the activity and integrity of the isolated protein.
A report in 1986 suggested that minor amounts of Rh antigen could be isolated in soluble form (Paradis et al., 1986), but unfortunately, this method, too, provided a limited quantity of Rh antigen, and the preparation was contaminated with cytoskeleton components. Attempts by workers in the field to repeat the method for isolation of large-quantities of active Rh antigen were unsuccessful, as were attempts to couple the soluble form of the antigen to various solid-phase supports and maintain antigenicity of the preparation when adsorbed to solid-phase matrices such as ELISA plates, nitrocellulose, plastic beads, Sepharose, etc. using standard methodologies.
1.2.4 Unavailability of Solid-Phase Rh Antigen has Limited Hematology
The unavailability of solid-phase (or bound) Rh antigen compositions, and the lack of ability of using contemporary immunoassay methodologies such as ELISA and solid-phase antigen assays have confounded the field of hematology for many decades.
Because of these limitations, and because no assays for anti-Rh antibodies exist except for time-consuming, cumbersome, non-quantitative RBC agglutination assays, the fields of hematology, obstetrics and neonatology are severely lacking in this important regard. The shortcomings of the present methodologies in the area are many.
First, the results are reported as a titer (i.e. the highest dilution of the serum in question that gives a standard degree of agglutination). It is commonly understood in the field that titer results are highly subjective depending on who reads the result. Variations of ±1 tube are accepted variations due to this subjectivity. Further, it is commonly known that a given serum can be given to two different individuals or two different laboratories and the reported titers can be dramatically different. Even if reporting of titers was absolute, the doubling dilutions used would mean that reported results potentially have almost 100% error inherent.
For example, suppose that 5 &mgr;g/ml antibody would yield an agglutination titer of 1:32. This would mean that the patient would need to have 10 &mgr;g/ml to yield a titer of 1:64. Thus, an amount of antibody of 9.5 &mgr;g/ml would be reported as a 1:32 titer because only 2-fold dilutions are made. The higher the anti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rh blood group antigen compositions and methods of use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rh blood group antigen compositions and methods of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rh blood group antigen compositions and methods of use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3104041

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.