RF coil for imaging system

Electricity: measuring and testing – Particle precession resonance – Spectrometer components

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S322000

Reexamination Certificate

active

06633161

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to imaging systems employing radio frequency (RF) coils for RF field generation, and more particularly to RF coils for use in such systems which coils facilitate higher frequency, higher efficiency, higher energy operation, permit use of larger coils, facilitate flexibility in coil design to accommodate a variety of applications and provide enhanced signal-to-noise performance so as to achieve among other things improved MRI, fMRI and MR spectroscopic imaging, all the above being achieved without significant increase in cost. The invention applies similarly to EPR or ESR.
BACKGROUND OF THE INVENTION
Nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI), functional MRI (fMRI), electron spin resonance (ESR) or electron paramagnetic resonance (EPR) and other imaging techniques using RF field generating coils are finding increasing utility in applications involving imaging of various parts of the human body, of other organisms, whether living or dead, and of other materials or objects requiring imaging or spectroscopy. For purposes of this application, RF shall be considered to include frequencies from approximately 1 MHz to 100 GHZ, the upper ranges of which are considered to be microwaves. While existing such systems are adequate for many applications, there is often a need for higher signal-to-noise and improved spectral resolution in such imaging so as to permit higher spatial resolution, higher image contrast, and faster imaging speed. In fMRI applications for example, where multiple images may be taken over time and a difference image generated to permit visualization of small changes in blood oxygen use over time in the body being imaged, differences between successive images may be very small, requiring high signal-to-noise to permit detection. A major limitation to higher resolution, and/or faster imaging is an insufficient signal to noise ratio. If the image signal intensity is below the noise level, an image can not be made. It is therefore important in high resolution systems to design an RF coil to maximize signal and to minimize noise. The RF coil of such a system should also be designed to minimize eddy currents propagating therein which are induced by time transient currents in gradient coils or by other causes.
The signal-to-noise ratio (SNR) and spectral resolution are increased by increasing the magnetic field strength of the system, generally expressed in tesla (T). The SNR benefits of image speed, spatial resolution, and contrast are also increased with the magnetic field strength. However, the frequency of which the nuclei of atoms in the body resonates varies as a function of the applied magnetic field, with each atomic species having a unique magnetic field dependent resonant frequency referred to as the Larmor frequency. For the human body which is composed primarily of hydrogen atoms in water, fat and muscle tissue, these hydrogen nuclear (proton) frequencies are approximately 64 MHZ for a field strength of 1.5 T, 170 MHZ (4 T), 175 MHZ (4.1 T), 300 MHZ (7 T), 340 MHZ (8 T) and 400 MHZ (9.4 T). Other species of atomic nuclei in a body would resonate at other frequencies for a given field strength. However, while conventional birdcage coils in existing MRI and related systems might resonate at a frequency of 170 MHZ (4 T) for example, the conventional birdcage coil with lumped elements (reactance) will operate very inefficiently, radiating much of its energy like an antenna, rather than conserving its energy like a “coil”. At higher frequencies still, such lumped element coils of human head or body dimensions will not reach the Larmor resonant frequency required, limiting the magnetic field strength at which such MRI or EPR systems can operate. Further, since frequency is a function of the electrical path lengths (measured in wavelengths) in the RF coil, higher frequency, and thus higher field strength operation, has been previously achievable only with very small coils which are not always useful for imaging a human being or other larger objects. A need therefore exists for an RF coil design which provides short electrical path lengths and shields against radiative losses, while still permitting an RF coil to be constructed with physical dimensions sufficient to image a human body and/or other larger objects with high frequency RF energy, thus permitting high field strength operation. It is also desirable to be able to tune each path of an RF coil to a precise resonant frequency, to be able to provide two or more resonant frequencies for different paths on the coil, and to be able to easily adjust/retune the resonant frequency of a path or paths.
Still another potential problem in operating these imaging systems, especially at high fields, is in driving the RF coil in a manner so as to achieve a homogeneous RF field, even when a body is positioned in the field, or to achieve some other desired field profile. Many factors influence field profile or contours including the manner in which the coils are driven, the geometric and frequency dependent electrical properties of the anatomy or object, and the frequency dependent properties of the coil circuits. Techniques for controlling these and other factors to achieve a homogenous or other desired field profile are therefore desirable. Also, while in many systems the same coil is used for both the transmitting of RF energy and the receiving thereof, the coils being switched between transmit and receive circuitry, there are many applications where the homogeneous excitation of NMR signal is achieved with a large volume coil and a small local receive coil having very short path lengths is used for achieving high SNR operation, such local receive coil being placed as close to the region of the body being imaged as possible. However, having both the large transmit coil and the local RF receive coil tuned to the same frequency results in the coils being destructively coupled (by Lenz's Law for example), this defeating enhanced operation from the local receive coil. It is therefore desirable to be able to quickly detune the large RF transmit coil during a receive operation by a local RF receive coil and vice versa. Improved ways of achieving this objective, particularly in an RF coil providing the characteristics previously indicated, are therefore desirable.
Finally, some of the advantages of having a local receive coil, and in particular the ability to place the RF coil closely adjacent to a region where imaging is desired, could be achieved if the RF coil were designed so as to localize both the transmission and reception of RF energy. While coils adapted for performing this function in certain specialized situations have existed in the past, a more general purpose design for RF coils to facilitate their use in producing localized RF fields and the localized reception of RF (NMR) signal, is desirable in order to achieve the enhanced SNR benefits of higher image signal, resolution, speed and contrast.
While some of the advantages indicated above are achieved by distributed impedance RF coils disclosed in U.S. Pat. Nos. 5,557,247 and 5,744,957, which patents have the same inventor as this invention, the systems taught in these patents, and in particular the RF coils thereof, do not provide optimum performance in all situations, and improvements are possible on various aspects of these RF coils, including eddy current suppression, design of the coil for optimum positioning in a greater number of cases, improved control of field profile, improved tuning options and improved detuning in situations where the use of two or more coils is desired.
SUMMARY OF THE INVENTION
In accordance with the above, this invention provides an RF coil for use in an imaging system, which coil has a cavity formed as a conductive enclosure in which resonant field can be excited, the enclosure being formed at least in part of an electrical conductor patterned to form RF conductive paths around the cavity. At least one tuning mechanism may be provided which determines a resonan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

RF coil for imaging system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with RF coil for imaging system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and RF coil for imaging system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3136792

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.