Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2001-07-31
2003-12-02
Pezzuto, Helen L. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S204000, C526S217000, C526S321000, C524S442000
Reexamination Certificate
active
06657031
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to thermosetting resin compositions useful for mounting semiconductor devices onto a circuit board, such as chip size or chip scale packages (“CSPs”), ball grid arrays (“BGAs”), land grid arays (“LGAs”), and the like, each of which having a semiconductor chip, such as large scale integration (“LSI”), on a carrier substrate. The compositions of this invention are reworkable when subjected to appropriate conditions.
2. Brief Description of Related Technology
In recent years, the popularity of small-sized electronic appliances, such as camera-integrated video tape recorders (“VTRs”) and portable telephone sets, has made size reduction of LSI devices desirable. As a result, CSPs, BGAs, and LGAs are being used to reduce the size of packages substantially to that of bare chips. Such CSPs, BGAs, and LGAs improve the characteristics of the electronic device while retaining many of their operating features, thus serving to protect semiconductor bare chips, such as LSIs, and facilitate testing thereof.
Ordinarily, the CSP/BGA/LGA assembly is connected to electrical conductors on a circuit board by use of a solder connection or the like. However, when the resulting CSP/BGA/LGA circuit board structure is exposed to thermal cycling, the reliability of the solder connection between the circuit board and the CSP/BGA/LGA often becomes suspect. Recently, after a CSP/BGA/LGA assembly is mounted on a circuit board, the space between the CSP/BGA/LGA assembly and the circuit board is often now filled with a sealing resin (often referred to as underfill sealing) in order to relieve stresses caused by thermal cycling, thereby improving heat shock properties and enhancing the reliability of the structure.
However, since thermosetting resins are typically used as the underfill sealing material, in the event of a failure after the CSP/BGA/LGA assembly is mounted on the circuit board, it is very difficult to replace the CSP/BGA/LGA assembly without destroying or scrapping the structure in its entirety.
To that end, techniques for mounting a bare chip on a circuit board are accepted as substantially similar to the mounting of a CSP/BGA/LGA assembly onto a circuit board. One such technique, disclosed in Japanese Laid-Open Patent Publication No. 102343/93, involves a mounting process where a bare chip is fixed and connected to a circuit board by use of a photocurable adhesive, where, in the event of failure, this bare chip is removed therefrom. However, this technique is limited to those instances where the circuit board includes a transparent substrate (e.g., glass) which permits exposure to light from the back side, and the resulting structure exhibits poor heat shock properties.
Japanese Laid-Open Patent Publication No. 69280/94 discloses a process where a bare chip is fixed and connected to a substrate by use of a resin capable of hardening at a predetermined temperature. In the event of failure, this bare chip is removed from the substrate by softening the resin at a temperature higher than the predetermined temperature. However, no specific resin is disclosed, and there is no disclosure about treating the resin which remains on the substrate. Thus, the disclosed process is at best incomplete.
As pointed out in Japanese Laid-Open Patent Publication No. 77264/94, it is conventional to use a solvent to remove residual resin from a circuit board. However, swelling the resin with a solvent is a time consuming process and the corrosive organic acid ordinarily used as the solvent may reduce the reliability of the circuit board. Instead, that disclosure speaks to a method for removing residual resin by irradiation with electromagnetic radiation.
Japanese Laid-Open Patent Publication No. 251516/93 also discloses a mounting process using bisphenol A type epoxy resin (CV5183 or CV5183S; manufactured by Matsushita Electric Industrial Co., Ltd.). However, the removal process so disclosed does not consistently permit easy removal of the chip, the curing step is lengthy at elevated temperatures, and the process generally results in poor productivity.
Of course, mechanical methods of removing/replacing semiconductor chips from/on a substrate are known, such as by cutting the chip to be removed/replaced. See U.S. Pat. No. 5,355,580 (Tsukada).
Thermoplastic underfill resins are known for use in semiconductor chip attachment. See U.S. Pat. No. 5,783,867 (Belke, Jr.). However, such thermoplastic resins tend to leak under relatively modest temperature conditions. In contrast, thermosetting resins cure into a matrix which ordinarily have greater thermal stability under end use operating temperatures.
U.S. Pat. Nos. 5,512,613 (Afzali-Ardakani), 5,560,934 (Afzali-Ardakani), and 5,932,682 (Buchwalter), each refer to a reworkable thermoset composition based on a diepoxide component in which the organic linking moiety connecting the two epoxy groups of the diepoxide includes an acid cleavable acyclic acetal group. With such acid cleavable acyclic acetal groups forming the bases of the reworkable composition, a cured thermoset need only be introduced to an acidic environment in order to achieve softening and a loss of much of its adhesiveness.
U.S. Pat. No. 5,872,158 (Kuczynski) refers to thermosetting compositions capable of curing upon exposure to actinic radiation, which are based on acetal diacrylates, and reaction products of which are reported to be soluble in dilute acid.
U.S. Pat. No. 5,760,337 (Iyer) refers to thermally reworkable crosslinked resins to fill the gap created between a semiconductor device and a substrate to which it is attached. These resins are produced by reacting a dienophile (with a functionality greater than 1) with a 2.5-dialkyl substituted furan-containing polymer.
International Patent Publication No. PCT/US98/00858 refers to a thermosetting resin composition capable of sealing underfilling between a semiconductor device including a semiconductor chip mounted on a carrier substrate and a circuit board to which said semiconductor device is electrically connected. The composition includes about 100 parts by weight of an epoxy resin, about 3 to about 60 parts by weight of a curing agent, and about 1 to about 90 parts by weight of a plasticizer. Here, the area around the cured thermoset is to be heated at a temperature of about 190 to about 260° C. for a period of time ranging from about 10 seconds to about 1 minute in order to achieve softening and a loss of much of its adhesiveness.
U.S. Pat. Nos. 5,948,922 (Ober) and 5,973,033 (Ober) each refer to a certain class of compounds having tertiary oxycarbonyl linkages, and compositions based on such compounds, which when cured provide decomposable compositions capable of being reworked.
Notwithstanding the state of the art, it would be desirable for an underfilling sealing material to provide good productivity and thermal shock properties, while allowing the substrates with which it is to be used to be readily processed and easily separated from a semiconductor device without application of acidic media or elevated temperature conditions that may compromise the integrity of the semiconductor devices remaining on the substrate or the substrate itself.
SUMMARY OF THE INVENTION
The present invention provides a curable composition, which is reworkable through thermal decomposition under exposure to temperature conditions in excess of those used to cure the composition, with the curable composition including a compound having at least one thermally cleavable linkage and which is selected from:
where each R is independently selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, C
1-4
alkoxy, halogen, cyano and nitro; each R
3
is independently selected from hydrogen, methyl, ethyl, propyl, and isopropyl; R
1
and R
2
are each independently selected from hydrogen, methyl, ethyl, propyl, phenyl, tolyl, and benzyl, provided that at least one of R
1
and R
2
is phenyl, tolyl or benzyl, and m is 1;
where R
5
is phenylene, R
6
and R
7
are each indepe
Bae Young Cheol
Crane Lawrence N.
Ober Christopher K.
Park Jong-Wook
Yu Shuyan
Loctite Corporation
Pezzuto Helen L.
Webb Ziesenheim & Logsdon Orkin & Hanson, P.C.
LandOfFree
Reworkable thermosetting resin compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reworkable thermosetting resin compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reworkable thermosetting resin compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3183392