Rewettable adhesive systems

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Adhesive outermost layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S047000, C524S366000, C524S368000, C524S503000, C524S803000, C524S808000, C524S831000, C156S441500

Reexamination Certificate

active

06803100

ABSTRACT:

The present invention relates to remoistenable adhesive systems comprising novel colloid dispersion mixtures, and to the use thereof.
Remoistenable adhesive coatings, also known as gum, used for postage stamps, envelopes, labels and the like are produced not only using natural products such as starch, dextrin glues and glutine glues but also to a considerable extent using polyvinyl alcohols. These are primarily low molecular mass grades of polyvinyl alcohol, partially hydrolyzed, which are obtained by either acidic or alkaline hydrolysis (DD Patent 62 634). Polyvinyl alcohols have the advantage that under hot conditions solutions having a solids content of up to 45% are possible and can be stored without gelling for a prolonged period when provided with sufficient preservative means. In order to ensure certain blocking resistances in the dried coatings, the polyvinyl alcohol solutions are often blended with homopolymeric polyvinyl acetate dispersions (DD-A-275 069, or EP-A-705 896). Where surface gloss is desired, copolymeric polymer dispersions can also be used. Glycerol or urea is often added in order to improve reemulsifiability. The development of tack after the dried adhesive film has been moistened can be influenced by varying the proportion in which the polyvinyl alcohol and polymer dispersion is blended.
Some of the known gums have considerable disadvantages arising after the dried coating has been stored, especially under hot conditions at 100° C. and for a period of 24 hours.
In many cases, the coating is found to have changed after storage such that it can no longer be activated with water. The coating is then inactive and can no longer be used as a gum. It is an object of the present invention to provide a remoistenable adhesive system which can be stored without change and can be reactivated very readily and within a very short time.
It has surprisingly been found that new kinds of colloid dispersion mixtures, as a constituent in remoistenable adhesive systems, achieve this object.
The present invention therefore provides a remoistenable adhesive system which comprises a colloid dispersion mixture obtained by copolymerizing at least and preference one water-soluble monomer with at least and preferably one water-insoluble comonomer in the presence of a micelle-forming emulsifier.
EP-A-0 894 309 describes colloid dispersion mixtures, processes for preparing them and their use as protective colloids for emulsion polymerization.
The proportion of said at least one water-soluble monomer in the colloid dispersion mixture is preferably from 70 to 95% by weight and with particular preference from 75 to 90% by weight.
Consequently, the proportion of said at least one water-insoluble monomer in the colloid dispersion mixture is preferably from 5 to 30% by weight and with particular preferably from 10 to 25% by weight.
The proportion of the colloid dispersion mixture in the remoistenable adhesive system is from 5 to 100%, preferably from 10 to 100% and, with particular preference, from 20 to 100%; i.e. the colloid dispersion mixture can be used either alone or in the form of a blend with other products without adversely impacting the package of properties of the colloid dispersion.
Suitable blend components include polymer dispersions with different monomer compositions, polyvinyl alcohols, and/or starches.
Relative to remoistenable systems based on dextrin or polyvinyl alcohol, the adhesive system of the present specification features an extremely short reactivation time. This means that the dried film, immediately after it has been wetted, develops a very high wet tack which permits the immediate bonding vital for high-speed automatic sealing units. Sufficiently rapid reactivation is still possible even at very low application rates. At application rates of about 100 g/m
2
or more it is found that the rapid development of tack is accompanied by pronounced stringing, which results in optimum substrate wetting.
The adhesives comprising the colloid dispersion are particularly suitable for systems which are reativated by moistening with water, develop tack and so permit bonding. Examples of the applications include: postage stamps; rear-flap gums for envelopes; remoistenable adhesive tapes; and removable adhesives for the flooring sector.
Removable adhesives are used to bond textile floor coverings since they allow rapid renovation, i.e., replacement of the floor covering. After the floor covering has been taken off, any residues of adhesive remaining on the floor can be removed easily after exposing them to water.
The adhesives can be applied either by roller or with a knotched trowel. Following a short evaporation phase, the textile covering with secondary backing can be laid directly into the still wet adhesive bed.
It has surprisingly been found that, in the presence of an emulsifier which forms micelles, the copolymerization of a water-soluble monomer with a water-insoluble comonomer leads to colloid dispersion mixtures of the copolymer.
Emulsifiers stabilize the finely disperse polymer particles produced by the emulsion polymerization. The emulsifiers are usually surface-active substances, or surfactants. Surfactants have a characteristic structure and possess at least one hydrophilic and one hydrophobic functional group. By virtue of this structure surfactants are able to accumulate at the interface between polymer phase and water phase and by means of steric and/or electrostatic effects to prevent coalescence of finely dispersed polymer particles. If the hydrophilic portion has no electrical charge, the emulsifier is said to be nonionic; if it has a negative charge, it is referred to as an anionic emulsifier; and, if positive charges are present, it is a cationic emulsifier. When surfactants are added to water, above a certain concentration there is formation of spherical micelles. It is this property of surfactants which is of great importance for the implementation of emulsion polymerization. This concentration, called the critical micelle concentration (CMC), is specific to each individual surfactant. If the concentration in water is raised significantly above the CMC, the aggregation behavior of the surfactants is changed, and elongated micelles (rod micelles), for example, are formed.
Suitable emulsifiers for the invention described herein include both nonionic and ionic emulsifiers. Examples of these are alkylaryl polyglycol ethers and alkyl polyglycol ethers each having from 3 to 50 mol of ethylene oxide units, block copolymers of ethylene oxide with propylene oxide, alkylsulfonates or alkylarylsulfonates, alkyl sulfates, alkyl and aryl ether sulfates and phosphates each having preferably 8 to 18 carbon atoms in the lipophilic portion and up to 50 ethylene oxide or propylene oxide units in the hydrophilic portion, and also monoesters or diesters of sulfosuccinic acid, or alkylphenols having in each case preferably 8 to 18 carbon atoms in the alkyl radical.
It is preferred to use nonionic emulsifiers and mixtures of ionic with nonionic emulsifiers.
Water-soluble monomers preferably used are N-methyl-N-vinylacetamide, N-vinylpyrrolidone or N-vinylformamide, as water-insoluble comonomers it is preferred to use unsubstituted or alpha-substituted esters of acrylic acid. Preference is given to the alkyl esters of acrylic or methacrylic acid, especially the C
4
to C
8
alkyl esters, such as butyl or ethylhexyl esters. It is also possible to use mixtures of the acrylic esters or other monomers, such as esters of maleic acid, for example; preferably dioctyl maleate.
The copolymerization is conducted as a free-radical addition polymerization at temperatures from 15 to 100° C., in particular from 60 to 90° C.; the free-radical initiator used can comprise either water-insoluble compounds such as 2,2′-azobisisobutyronitrile or 2,2′-azobis(2-methylbutyronitrile) or water-soluble compounds such as 2,2′-azobis(2-amidinopropane) dihydro-chloride.
The invention is described in more detail below with reference to working examples, but without being restricted

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rewettable adhesive systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rewettable adhesive systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rewettable adhesive systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282199

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.