Marine propulsion – Electric drive for propelling means
Reexamination Certificate
2000-03-31
2001-11-27
Swinehart, Ed (Department: 3617)
Marine propulsion
Electric drive for propelling means
C114S14400A
Reexamination Certificate
active
06322405
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to electric propulsion systems for recreational watercraft. More specifically the present invention relates to propulsion systems which employ operator input devices such as foot pedals, and more particularly the utilization of an operator input device to momentarily reverse the rotational direction of the propulsion system.
2. Description of the Related Art
Recreational watercraft are extremely popular for a variety of uses. Many watercraft rely on an outboard or inboard motor as a primary propulsion device. This type of motor typically includes an internal combustion engine drivingly coupled to prop, which supplies thrust to the watercraft. In watercraft outfitted for fishing purposes, a secondary propulsion system is often employed. These secondary propulsion systems are commonly known as trolling motors or electric outboards. Trolling motors are typically light weight electric motors drivingly coupled to a prop for propelling a fishing boat. Because of the relatively small size and quiet operation of such motors, they are often used to propel the boat into remote and shallow regions of a body of water.
Secondary propulsion systems, or trolling motors, are often connected to an operator input device such as a foot pedal. The operator will utilize the foot pedal to control the amount of thrust and direction of thrust of the trolling motor. In many instances, the trolling motor may be operated and controlled without diverting the user from fishing activities. While these trolling motor systems, including the operator input devices, have well served their intended use, but they are not without the possibility for improvement. For example, the typical trolling motor, because it is intended to venture into otherwise inaccessible areas, may often become bogged down or entangled with weeds about the prop. Such an event becomes a time consuming and annoying delay to the operator. The delay often entails shutting off the trolling motor and removing the weeds from the prop by hand. Attempts to remedy this problem have been met with varying degrees of success. Still, weed entangled props prove to be a recurring problem for numerous fisherman and watercraft operators.
Another area where improvement may be seen is in the thrust and directional control of the trolling motors. For example, current trolling motors coupled to a foot pedal or other input device are relatively simplistic in their functionality. Typically a foot pedal will allow the operator to turn left, turn right, engage forward thrust, and set the speed of the motor (i.e., vary the amount of thrust). To propel the watercraft in reverse the operator normally must rotate the trolling motor 180° from the current orientation by employing a turn left or turn right command. This poses a problem when an obstacle is noted too late to execute the reversal, or when the prop has already become entangled in weeds or submerged plant growth. The operator would obviously prefer enhanced maneuverability in situations as these, but instead is limited by the functionality of the input device.
There is, therefore, a need in the art for a watercraft secondary propulsion system, or trolling motor system which improves functionality and maneuverability of the watercraft. There is a need to provide such a system that will also minimize, if not eliminate, the operator's efforts in disentangling the prop when encumbered with weeds or debris. Such a system should preferably be adaptable to existing trolling units as well as applicable to new designs.
SUMMARY OF THE INVENTION
The invention provides a technique for controlling an electrical propulsion system designed to respond to these needs. The propulsion system includes an electric motor and a prop drivingly coupled to the electric motor. An operator input device includes a control circuit coupled to the propulsion unit. A switch is coupled to the control circuit and is adapted to momentarily alter a predefined rotational state of the prop when activated by the operator. Prior to activation of the switch the propulsion system may operate in a predefined rotational state of the prop in a first rotational direction (i.e. clockwise or counterclockwise), and at a first pre-selected speed. The first rotational state may be defined to provide a forward or reverse thrust at a desired speed. When the switch is activated, the operation of the motor and prop is altered, by reversal of the rotational direction and, where desired, the speed of rotation. For example, the switch may be a momentary reverse switch causing the motor and prop to reverse directions at a maximum speed of rotation.
In accordance with another aspect of the technique, an operator input device is provided for a propulsion unit on a watercraft. The propulsion unit is of the type having an electric motor and a prop drivingly coupled to the electric motor. The operator input device includes a control circuit coupled to the propulsion unit. A switch is coupled to the control circuit and is adapted to alter a predefined rotational direction of the prop upon activation by the operator. Prior to activation of the switch, the propulsion system operates having a predefined rotational state of the prop in a first rotational direction, (i.e. clockwise or counterclockwise) and at a first pre-selected speed. Again, the first rotational state may be defined to provide a forward or reverse thrust at a desired speed. When the switch is activated, direction of rotation of the motor and prop is reversed. The motor and prop may then continue in the reverse direction until a subsequent command is received.
In accordance with another aspect of the technique, a method of controlling a propulsion unit on a watercraft is provided. The propulsion unit is of the type having an electric motor drivingly coupled to a prop. The method includes the acts of defining a first rotational state of the prop. A signal is then provided to the electric motor. The signal causes a momentary reversal of the rotational state of the prop. The signal may, alternatively result in sustained reversal of the prop rotation.
The technique may be applied to a wide variety of system designs. In particular, the technique is well suited both to conventional trolling motor and electric outboard configurations, and to alternative designs, such as inboard and twin propulsion unit systems.
REFERENCES:
patent: 3995579 (1976-12-01), Childre
patent: 4471708 (1984-09-01), Wilson et al.
patent: 5401195 (1995-03-01), Yocom
Griffith, Sr. Thomas E.
Hudson Jeffrey T.
Bombardier Motor Corporation of America
Fletcher Yoder & Van Someren
Swinehart Ed
LandOfFree
Reversing control for trolling motor propulsion system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reversing control for trolling motor propulsion system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reversing control for trolling motor propulsion system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2596716