Reversibly extensible film

Plastic and nonmetallic article shaping or treating: processes – Forming continuous or indefinite length work – Layered – stratified traversely of length – or multiphase...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S173120

Reexamination Certificate

active

06669887

ABSTRACT:

BACKGROUND OF THE INVENTION AND RELATED ART
The present invention relates to flexible sheet or roll stock film having elastic characteristics and to products formed of such film. Film-forming polymers are used to hot form the film with elastic and nonelastic or inelastic discrete polymer portions connected at a joint therebetween.
The films are useful in tapes, closure devices, labels and other constructions requiring a stretchable or elastic film element. The shear resistance and elastic property of the film in combination with the non-creep nature of the inelastic portions provide unique and valuable performance useful in a wide range of applications. The films may be used as a construction film for forming an element of a more comprehensive tape or closure system including industrial or craft applications requiring pieces to be secured together with tension during a dry cycle or medical applications such as medical tapes, suture tapes, nasal dilators, bandages and the like.
The films are particularly useful as substrates for closure systems such as mechanical and/or self-adhesive diaper fastening tapes or tabs. In such applications, the elastic characteristic of the film enhances fit, comfort, absorbency, containment and/or security of closure. The films may also be used as attachments to the waist or leg areas of a device or article of clothing for enhancing fit, comfort, and/or sealing characteristics. The film is especially useful in connection with disposable diaper tape fastening systems, and it is specifically described with respect to the same hereinafter.
Disposable diapers are known in the art and comprise multiple layer assemblies or laminates including an inner filling of absorbent fiber or material sandwiched between outer layers. One of the outer layers includes an absorbent material to be disposed against the user, and the other outer layer may comprise a waterproof plastic film for containment of waste within the diaper.
The use of stretchable fastening tapes or tabs in disposable diapers is disclosed in U.S. Pat. No. 3,800,796 to Jacobs. In Jacobs, a polymeric variation of the tape includes a semielastic strip having a fully extensible elastic central segment and two non-extensible inelastic terminal segments. The elastic segment comprises a heat-sealable elastomer such as a butadiene-styrene block polymer. The patent does not describe a coextrusion process for making film that may be used to form the tape.
U.S. Pat. No. 4,787,897 to Torimae et al. discloses a co-extruded diaper fastening tape with an elastic central segment and nonelastic terminal segments. The elastic segment includes triblock polymers containing 10 to 80 parts of a processing aid comprising a hydrogenated terpene resin or alicyclic hydrocarbon having a melt or softening point of 80° C. and a molecular weight of 400 to 2000.
SUMMARY OF THE INVENTION
It has now been discovered that certain polymeric materials comprising thermoplastic elastomers may be used to form reversibly extensible sheets or roll film material. The sheets or films include discrete portions of thermoplastic elastomer having elastic characteristics joined with portions of thermoplastic polymer having nonelastic properties.
The thermoplastic elastomers and the thermoplastic polymers are film-forming polymers that may be hot formed as by simultaneous coextrusion. For example, the film-forming polymers may be co-extruded in a pattern of laterally spaced and longitudinally parallel polymer lanes or stripes extending in the machine direction with integrally formed joints adhering adjacent lanes together.
The film material according to the invention has excellent extrusion characteristics and superior joint strength between the elastic and the nonelastic polymers. Also, the film materials have improved elevated temperature shear properties and improved caliper and roll conformation as indicated by wound rolls of near cylindrical configuration.
The thermoplastic polymer may be a polyolefin such as polyethylene, polypropylene, poly(ethylene-propylene), poly(ethylene-vinyl acetate), poly(styrene-butadiene), or copolymers or blends thereof. A minor amount of an ethylene-propylene component may be incorporated in the thermoplastic polymer. Polypropylene is a preferred thermoplastic polymer. Films of such polymers, e.g. 0.1 to 20 mils thick, exhibit little or no recovery from stretching or deformation and exemplify the inelastic or nonelastic properties of interest herein.
Thermoplastic elastomers of interest herein are block copolymers having or containing the tetrablock structure A-B-A-D, the triblock structure A-B-A and, optionally, the diblock structure A-B in lesser amounts as a minor component. In such block structures, A represents a block which is non-rubbery or glassy or crystalline at service temperature, e.g. about 100° F. in the case of diaper tapes, and B and D, which may be the same, each represent a block which is rubbery or elastomeric at service temperature. At elevated temperatures, the A, B and D blocks are sufficiently fluid to enable coextrusion of the thermoplastic elastomer. Films of such polymers, e.g. 0.1 to 20 mils thick, exhibit recovery from stretching or deformation below their yield point and exemplify the elastic properties of interest herein.
The thermoplastic elastomer may be blended with a thermoplastic polymer end block reinforcing agent of relatively high molecular weight, e.g. a molecular weight greater than 2000 and, more preferably, in the range of 3000 to 5000, and higher. Such reinforcing agents improve elevated temperature shear strength. Most unexpectedly, such reinforcing agents have been found herein to increase the caliper or gauge uniformity of wide sheet coextrusions, e.g. 1500 mm or 60 inches.
Preferred reinforcing agents are high molecular weight aromatic compounds such as polyphenylene oxide (or polyphenyl ether) which have molecular weights in the range of 3,000 to 30,000 and higher. These reinforcing agents are added in amounts ranging from 3 to 9, and more preferably, from 8 to 9 parts by weight based on the weight of the elastomer component. Other preferred reinforcing agents comprise pure monomer resins of polycyclic arenes including substituted and unsubstituted vinylarenes such as styrene and methylstyrene. These are used in amounts ranging from 5 to 25, and more preferably, from 12 to 14 parts by weight based on the weight of the elastomer component.
Other conventional additives such as antioxidants, colorants and processing aids may be added to either or both the elastic and nonelastic polymers.
A diaper fastening tape should have the ability to withstand an applied load of 500 grams for more than 1,000 minutes at 100° F. (100° F. being used to simulate body temperature.) Some of the films in accordance with the invention have shear strengths that exceed 10,000 minutes at 100° F. under a 500 g load.
The reason for the improved shear strength is believed to be related to the unique nature of the joint at the joining plane or interface where the thermoplastic meets the tetrablock thermoplastic elastomer. The strength of the joint is believed to be improved by the unique interaction of the saturated tetrablock elastomer with the thermoplastic polymer. More particularly, preferred tetrablock elastomers include a terminal segment or free tail block of ethylene-propylene that provides a hydrocarbon structure similar to the hydrocarbon groups of the thermoplastic so as to favor interaction and improved joint strength. This effect may be further enhanced by addition to the thermoplastic of additional similar groups such as ethylene propylene rubber (EPR) which is used as an impact modifier. In contrast, elastic films made with conventional diblock and/or triblock thermoplastic elastomers do not develop such good joint strength.
Shear strength is improved also by the use of increased numbers of elastomer lanes of reduced size. For example, the shear strength of films having a 2″ wide polyolefin lane and a ¼″ wide rubber lane were greatly improved by reducing the l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reversibly extensible film does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reversibly extensible film, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reversibly extensible film will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3165589

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.