Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2000-07-24
2001-10-16
Picard, Leo P. (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
Reexamination Certificate
active
06304451
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally cooling heat generating objects, such as electronic solid state and integrated circuit devices. More specifically, the present invention relates to apparatuses for dissipating heat generated by such devices.
In the electronics and computer industries, it has been well known to employ various types of electronic device packages and integrated circuit chips, such as the PENTIUM central processing unit chip (CPU) manufactured by Intel Corporation and RAM (random access memory) chips. These integrated circuit chips have a pin grid array (PGA) package and are typically installed into a socket which is soldered to a computer circuit board. These integrated circuit devices, particularly the CPU microprocessor chips, generate a great deal of heat during operation which must be removed to prevent adverse effects on operation of the system into which the device is installed. For example, a PENTIUM microprocessor, containing millions of transistors, is highly susceptible to overheating which could destroy the microprocessor device itself or other components proximal to the microprocessor.
In addition to the PENTIUM microprocessor discussed above, there are many other types of semiconductor device packages which are commonly used in computer equipment, for example. Recently, various types of surface mount packages, such as BGA (ball grid array) and LGA (land grid array) type semiconductor packages have become increasingly popular as the semiconductor package of choice for computers. For example, many microprocessors manufactured by the Motorola Corporation, for use in Apple Corporation computers, employ BGA-type packages. Unlike a PENTIUM microprocessor with a PGA package, which has pins to be installed into a receiving socket, BGA and LGA semiconductor packages include an array of electrical contacts on their bottom surfaces to engage directly with an array of receiving electrical contacts on a circuit board, socket or the like. These semiconductor device packages are either soldered directly to a circuit board or positioned within a socket.
In similar fashion to the PENTIUM-type semiconductor devices discussed above, the BGA, LGA and related device packages also suffer from excessive generation of heat. If such heat is not properly dissipated, the chip will eventually fail. This is particular true when the semiconductor device is mounted on a circuit board in a cramped environment, such as in a laptop computer. In this environments, a balance must typically be made between the space available and the heat dissipation required for the semiconductor package. Typically, the space available above the semiconductor device to be cooled is very limited. As a result, a cooling solution cannot be provided on the top of the semiconductor package.
In light of the limited space above the semiconductor package, a cooling solution must be provided from below the heat generating semiconductor device package.
However, conventional heat sink assemblies cannot affix to the semiconductor package from below because the package is typically mounted on a circuit board and little room is provided to enable the tension of the heat sink assembly to be easily adjusted. For example, in the prior art, a heat sink assembly can be simply fastened to the bottom of the circuit board and into communication with the bottom a the semiconductor package via a pass through bore in the circuit board. This direct fastening does not permit adjustment the tension of the physical communication of the heat sink and the bottom of the semiconductor package to be easily adjust. This creates a risk that too much pressure will be provided causing the electrical mounting of the semiconductor package to the circuit board to be severed. Or, if too little pressure is provided, flush thermal communication of the heat sink to the bottom of the heat generating semiconductor package will not be achieved resulting is poor heat dissipation.
In view of the foregoing, there is a demand for a heat sink assembly that can achieve high thermal conductivity and heat dissipation. Further, there is a demand for a heat sink assembly that is compact and can be reverse mounted to the bottom of a heat generating semiconductor device package with a fully adjustable contact tension. Moreover, there is a demand for such a heat sink assembly that can be easily installed and manufactured at low cost. In additional, there is a demand for a reverse mount heat sink assembly that can be easily removed when desired.
SUMMARY OF THE INVENTION
The present invention preserves the advantages of prior art heat sink assemblies for integrated circuit devices, such as microprocessors. In addition, it provides new advantages not found in currently available assemblies and overcomes many disadvantages of such currently available assemblies.
The invention is generally directed to the novel and unique heat sink assembly with particular application in cooling heat generating objects, such as microprocessor integrated circuit devices that cannot receive or accept heat sink assemblies mounted on the top-surfaces thereof. The heat sink assembly of the present invention enables the simple, easy and inexpensive assembly, use and maintenance of a heat sink assembly while realizing superior heat dissipation and the ability to dissipate heat from the bottom of the device.
The present invention provides a reverse mount heat dissipating device, for removing heat from an electronic device package, with a circuit board and a bore therethrough. A semiconductor package is affixed to the top surface of the circuit board via a number of electrical contacts. The semiconductor package is positioned over the bore of the circuit board. A retaining collar is positioned in the bore of the circuit board. The retaining collar is secured in the bore in the circuit board by a circumferential groove and flanges. The retaining collar also includes a female threaded collar bore therethrough. A heat dissipating member, with a male threaded shank portion and a substantially flat top surface, is threadably received in the female threaded collar bore so that the flat top surface of the heat dissipating member is in flush thermal communication with the bottom surface of said semiconductor package. As a result, heat dissipation can be provided from a semiconductor package where mounting of a heat sink to the top of a semiconductor package is not possible.
To install the reverse mount heat sink of the present invention, the retaining collar is first installed into the bore in the circuit board. The retaining collar is pressed through the circuit board where the flange about the leading free end of the collar is inwardly deflected to clear the bore of the circuit board. When fully inserted and the circuit board is cleared, the flange moves outwardly to secure the retaining collar to the periphery of the bore. The retaining collar is secured to the circuit board and serves as an anchor for receipt of the heat dissipating member. The male threaded shank of the heat dissipating member is threaded up into the female threaded bore of the retaining collar until the top flat surface of the shank of the heat dissipating member is in flush thermal communication with the bottom surface of the heat generating semiconductor device. The heat dissipating member is manually rotated to effectuate threading and, therefore, can be adjusted to control the overall tension of the contact of the heat dissipating member to the bottom of the semiconductor device package.
It is therefore an object of the present to provide a heat sink assembly that can accommodate a wide array of heat generating objects.
Another object of the present invention is to provide a heat sink assembly that is inexpensive and easy to install and manufacture.
It is a further object of the present invention to provide a heat sink assembly that can be reverse mounted to a semiconductor device package.
It is yet another object of the present invention to provide a heat sink assembly that is tension adj
Barlow Josephs & Holmes
Datskovskiy Michael
Picard Leo P.
Tyco Electronics Logistics AG
LandOfFree
Reverse mount heat sink assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reverse mount heat sink assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reverse mount heat sink assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2617124