Reverse mode electro-optical film composed of one mutual...

Stock material or miscellaneous articles – Liquid crystal optical display having layer of specified...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S299010, C252S299670, C252S299500, C428S001500

Reexamination Certificate

active

06383577

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
A new type of composite material made by liquid crystals and polymers which is naturally transparent to light and becomes opaque by application of electric fields has been invented. In this material the two components (polymer and liquid crystal) are mutually dispersed one in the other. With respect to other similar inventions, concerning mutual dispersed liquid crystal and polymers, this new type of film presents the following advantages:
1. It is highly adhesive to glass or plastic supports since it contains more than 50% of the polymer component.
2. It can be produced starting from a binary emulsion of a thermotropic liquid crystal and a non liquid crystal organic compound, differently from other mutual dispersion of liquid crystals and polymers, which are produced by polymerising liquid crystals solution.
3. It has a haze-free electrooptical transmission.
2. Prior Art
In the last fifteen years many composite electrooptical films made by liquid crystals and polymers have been produced. Some of these film are made by droplets of liquid crystal dispersed in polymers and are usually defined as polymer dispersed liquid crystals (PDLC).
Direct Mode PDLC, are those films being opaque in their natural state, and becoming transparent under the application of electric fields (1,2). In order to extend the application field of PDLC films, Reverse mode PDLC have been also invented (3,4).
Another class of composite films, are those containing small percentages (typically 3%-10%) of polymers dispersed in liquid crystal layers (5-10). These films, usually defined as GELS, have the advantage to be transparent in their natural state and furthermore they are almost haze-free, but they have a poor adhesive character.
Recently a new class of liquid crystals and polymer composite films have been produced where comparable amounts of polymer and liquid crystals are mutually dispersed one in the other (11). No droplets of liquid crystals dispersed in polymer, or droplets of polymer in the liquid crystals are present. Despite of their complex morphology these films are almost haze free in their transparent state.
The material above mentioned do not consent to optimise the full set of properties required for their application in display technology, smart windows production etc, where they must be inserted as tin films between glass or plastic supports, in order to confer a variable light transmission character to the system.
Important requirements are:
1. Reverse mode character. The film has to be naturally transparent and must become opaque under the action of an electric field.
2. The optical contrast must be high.
3. In the clear state the optical transmission has to be almost constant as a function of the viewing angle (the angle between the perpendicular to the film and the viewing direction). Such a property of the films is usually defined as “haze free” character.
4. The films must have a very good adhesion to the surface of glass or plastic supports. This property is required in order to simplify the construction of optical devices and in order to confer to these devices a strong mechanical stability.
Electrooptical films made by polymers and liquid crystals invented since now cannot be optimized with respect to all the above requirements.
Reverse Mode PDLC films (those containing molecular oriented droplets of liquid crystals dispersed in a continues polymer matrix) can be easily optimised with respect to above 1,2,4 properties, but it is very difficult, due to the morphology of the system, to provide them with a haze-free character.
Films of liquid crystals containing small percentages of polymers can be easily optimised with respect to 1,2,3 properties, but they will have a poor adhesion character, since this property is directly correlated to the polymer abundance.
Films of mutually dispersed polymer and liquid crystals, having a high polymer concentration, have been produced until now only in the direct scattering mode configuration, in such a way that they are optimized only with respect to 2,3,4 properties (11).
SUMMARY OF THE INVENTION
It is therefore an object of present invention to provide a film made by a mutual dispersion of polymer and liquid crystal where the liquid crystal domains remains in an oriented state in absence of directly applied electric field, thus having a so-called reverse mode electrooptical behavior.
It is another object of the present invention to provide a film made by a mutual dispersion of polymer and liquid crystals having a haze-free electrooptical character, due to the morphology of the system.
It is another object of the present invention to provide a film made by a mutual dispersion of polymer and liquid crystals having a high electrooptical contrast.
It is still another object of the present invention to provide a film made by a mutual dispersion of polymer and liquid crystal having a high polymer concentration, preferentially above 50% in weight, in order to have a high adhesion to glass or plastic substrates.
It is a further object of the present invention to provide a film made by a mutual dispersion of polymer and liquid crystals having all the above mentioned properties and where the polymer component is obtained both a) by polymerizing in situ an organic monomer not belonging to liquid crystalline phases, b) by polymerizing in situ an organic monomer belonging to the liquid crystal class.
It is a further object of the present invention to provide new processes to prepare the above films.
It is a final object of the present invention to provide an electrooptical cell where the film above mentioned it is sandwiched between two supporting conductive glass or plastic supports and where a d.c. or a.c. electric power supply it is used in order to provide an electric field to switch the film from a transparent to an opaque state.
In order to achieve these objects two processes which are also object of the present invention have been developed.
First Process
1. A liquid crystal and an organic monomer having the property to form a fluid emulsion, where droplets of liquid crystals are dispersed into the organic monomer, are selected.
2. The two components plus some minor component such as polymerisation activators or dyes if required are mixed together to form the emulsion.
3. The emulsion is deposited above glass or plastic conductive supports.
4. A magnetic field is applied to the system, in order to orient the liquid crystal contained into the droplets.
5. The polymerisation of the monomer is activated by u.v. light or thermally, depending on the chemical nature of the monomer.
The chemical properties of the monomer to be used must be such that:
they must form an emulsion with the liquid crystal they must polymerize forming a mutual irregular dispersion of the liquid crystal and polymer.
It has been found by the authors of the present invention that a compound that satisfies to both these condition is the tripropyleneglycol diacrylate (TPGD) corresponding to the following chemical formula:
The polymerization of the monomer in the presence of the magnetic field will ensure a structure of the cured film similar to that described in
FIG. 1
a,
where the liquid crystal molecules keep naturally a common orientation. If the refractive index of the polymer is matched with the no component of the liquid crystal refractive index the film will appear transparent, since no scattering of the light will be caused by the irregular distribution of the two components (the polymer and the Liquid Crystal).
In order to use the films to control the light transmission two other important conditions must be fulfilled:
The dielectric anisotropy of the liquid crystal must be negative and its retractive index anisotropy must be quite large. In this case, when an electric field is applied to the film, the liquid crystal molecules will be gradually tilted perpendicularly to their natural direction and the film will gradually become opaque due to the mismatching of the refractive indices of the polymer and liquid crystal a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reverse mode electro-optical film composed of one mutual... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reverse mode electro-optical film composed of one mutual..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reverse mode electro-optical film composed of one mutual... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829974

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.