Reversal of insulin-dependent diabetes by islet-producing...

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Animal or plant cell

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S366000, C435S382000, C435S371000

Reexamination Certificate

active

06703017

ABSTRACT:

BACKGROUND OF THE INVENTION
Diabetes is a major public health problem. By 1998, 16 million Americans had been diagnosed as having diabetes (American Diabetes Association, 1998).
Ocular complications of diabetes are the leading cause of new cases of legal blindness in people ages 20 to 74 in the United States. The risk for lower extremity amputation is 15 times greater in individuals with diabetes than in individuals without it. Kidney disease is a frequent and serious complication of diabetes. Approximately 30 percent of all new patients in the United States being treated for end-stage renal disease have diabetes. Individuals with diabetes are also at increased risk for periodontal disease. Periodontal infections advance rapidly and lead not only to loss of teeth but also to compromised metabolic function. Women with diabetes risk serious complications of pregnancy. Current statistics suggest that the mortality rates for infants of mothers with diabetes is approximately 7 percent.
Clearly, the economic burden of diabetes is enormous. Each year, patients with diabetes or its complications spend 24 million patient-days in hospitals. Diabetes is our nation's most expensive disease with an estimated total annual cost of $98 billion; however, the full economic impact of this disease is even greater because additional medical expenses often are attributed to the specific complications of diabetes rather than to diabetes itself.
Diabetes is a chronic, complex metabolic disease that results in the inability of the body to properly maintain and use carbohydrates, fats, and proteins. It results from the interaction of various hereditary and environmental factors and is characterized by high blood glucose levels caused by a deficiency in insulin production or an impairment of its utilization. Most cases of diabetes fall into two clinical types: Type I, or juvenile-onset, and Type II, or adult-onset. Type I diabetes is often referred to as Insulin Dependent Diabetes, or IDD. Each type has a different prognosis, treatment, and cause.
Approximately 5 to 10 percent of diabetes patients have IDD. IDD is characterized by a partial or complete inability to produce insulin usually due to destruction of the insulin-producing &bgr; cells of the pancreatic islets of Langerhans. Patients with IDD would die without daily insulin injections to control their disease.
Few advancements in resolving the pathogenesis of diabetes were made until the mid-1970s when evidence began to accumulate to suggest that Type I IDD had an autoimmune etiopathogenesis. It is now generally accepted that IDD results from a progressive autoimmune response which selectively destroys the insulin-producing &bgr; cells of the pancreatic Islets of Langerhans in individuals who are genetically predisposed. Autoimmunity to the &bgr; cell in IDD involves both humoral (Baekkeskov et al., 1982; Baekkeskov et al., 1990; Reddy et al. 1988; Pontesilli et al., 1987) and cell-mediated (Reddy et al. 1988; Pontesilli et al., 1987; Wang et al., 1987) immune mechanisms. Humoral immunity is characterized by the appearance of autoantibodies to &bgr; cell membranes (anti-69 kD and islet-cell surface autoantibodies), &bgr; cell contents (anti-carboxypeptidase A
1
, anti-64 kD and/or anti-GAD autoantibody), and/or &bgr; cell secretory products (anti-insulin). While serum does not transfer IDD, anti-&bgr; cell autoantibody occurs at a very early age, raising the question of an environmental trigger, possibly involving antigenic mimicry. The presence of cell-mediated immunological reactivity in the natural course of IDD is evidenced by an inflammatory lesion within the pancreatic islets, termed insulitis. Insulitis, in which inflammatory/immune cell infiltrates are clearly visible by histology, has been shown to be comprised of numerous cell types, including T and B lymphocytes, monocytes and natural killer cells (Signore et al., 1989; Jarpe et al., 1991). Adoptive transfer experiments using the NOD (non-obese diabetic) mouse as a model of human IDD have firmly established a primary role for auto-aggressive T lymphocytes in the pathogenesis of IDD (Bendelac, et al., 1987; Miller et al., 1988; Hanafusa et al., 1988; Bendelac et al., 1988). Unfortunately, the mechanisms underlying destruction of the pancreatic &bgr; cells remain unknown.
Recent efforts to culture pancreatic cells, including efforts reported in the following publications, have focused on cultures of differentiated or partially differentiated cells which in culture have grown in monolayers or as aggregates. By contrast to these reports, the instant invention discloses a method and a structure wherein an islet-like structure is produced which has a morphology and a degree of cellular organization much more akin to a normal islet produced in vivo through neogenesis.
Gazdar, et al. (1980), disclosed a continuous, clonal, insulin- and somatostatin-secreting cell line established from a transplantable rat islet cell tumor. However, the cells disclosed were tumorigenic and were not pluripotent.
Brothers, A. J. (WO 93/00441, 1993), disclosed hormone-secreting cells, including pancreatic cells, maintained in long-term culture. However, the cells cultured are differentiated, as opposed to pluripotent stem cells, which are selected at an early stage for their hormone secreting phenotype, as opposed to their capacity to regenerate a pancreas-like structure.
Korsgren, et al. (1993), disclosed an in vitro screen of compounds for their potential to induce differentiation of fetal porcine pancreatic cells. The instant invention does not depend on the use of fetal tissue.
Nielsen, J. H. (WO 86/01530, 1986), disclosed a method for proliferation of wholly or partially differentiated beta cells. However, this disclosure depended on fetal tissue as a source of the islet cells grown in culture.
McEvoy et al. (1982), disclosed a method for tissue culture of fetal rat islets and compared the effect of serum on the defined medium maintenance, growth and differentiation of A, B, and D cells. Once again, the source of islet cells is fetal tissue.
Zayas et al. (EP 0 363 125, 1990), disclosed a process for proliferation of pancreatic endocrine cells. The process depends on the use of fetal pancreatic tissue, and a synthetic structure, including collagen which is prepared to embed these cells for implantation. The thus produced aggregates of cultured cells upon implantation require 60-90 days before having any effect on blood glucose levels, and require 110-120 days before euglycemia is approached. In contrast, the instant invention provides in vitro grown islet-like structures which do not require collagen or other synthetic means for retention of their organization, and which, upon implantation, provide much more rapid effects on the glycemic state of the recipient.
Coon et al. (WO 94/23572, 1994), disclosed a method for producing an expanded, non-transformed cell culture of pancreatic cells. Aggregated cultured cells are then embedded in a collagen matrix for implantation, with the attendant shortcomings noted for the Zayas et al., EP 0 363 125, structures and the distinctions noted with the structure produced according to the instant invention.
In view of the foregoing reports, the instant invention, wherein functional islet-like structures containing cells which express insulin, glucagon and/or somatostatin which can be implanted into clinically diabetic mammals which subsequently remain healthy (after elimination of insulin treatment), is surprising. This is because conventional and immunofluorescent histology of the pancreatic islets of Langerhans (Lacey et al, 1957; Baum et al., 1962; Dubois, 1975; Pelletier et al., 1975; Larsson et al., 1975), together with recent three dimensional imaging (Brelje et al., 1989), have revealed a remarkable architecture and cellular organization of pancreatic islets that is ideal for rapid, yet finely controlled, responses to changes in blood glucose levels. It could not be predicted that such a structure could be produced in vitro, particularly when one considers that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reversal of insulin-dependent diabetes by islet-producing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reversal of insulin-dependent diabetes by islet-producing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reversal of insulin-dependent diabetes by islet-producing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3264287

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.