Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...
Reexamination Certificate
2002-09-09
2004-05-11
Winakur, Eric F. (Department: 3736)
Surgery
Diagnostic testing
Measuring or detecting nonradioactive constituent of body...
C600S310000
Reexamination Certificate
active
06735459
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a method of making and affixing a reusable probe to a patient by means of disposable bandage apparatus so that there is no contact between the costly, reusable portion of the probe and the patient. The contaminated bandage apparatus, which is relatively inexpensive, can then be discarded after single patient use and the probe can be re-used with a new bandage apparatus.
Heretofore the use of pulse oximeter probes has been limited to the use of a costly reusable probe, which is contaminated by use on a patient, or cheaper, single-use probes, which, in the aggregate, amount to a considerable expenditure for a health care institution.
Other individuals have attempted to convert single use probes into multi-use probes through a lamination process. In that process, the original adhesive material is removed from the original manufacturer's sensor. The sensor is then laminated in a plastic sheath and the entire sheath is then inserted into a transparent, adhesive-backed sleeve, which is then adhered to a patient. After use, the probe can then be extracted from the sleeve and inserted into a new sleeve for use on another patient.
There are certain disadvantages to this method. Firstly, it is difficult to insert the flexible laminated sensor into a long sleeve. Secondly, the thickness of a laminated sensor inside of a sleeve makes it difficult to bend around, and to stick properly to, a human appendage. Thirdly, transmission and reception of infrared light can be affected by extraneous light entering from the sides of the sleeve. And fourthly, there is some dispute as to the affect on infrared light transmission when passing through the sleeve and the adhesive material coupled thereto.
THE PRESENT INVENTION
The present invention not only solves the problems outlined above, but offers an alternative that is cheap to manufacture and easy to use.
The present invention is directed to improving the form and affixation method of a reusable pulse oximeter sensor. It comprises a reusable pulse oximeter probe with at least one light emitting diode and one photocell detector wherein said emitter and detector are enclosed in plastic housings, one housing having an aperture or radiation transparent window aligned with said emitter, and the other housing having an aperture or radiation transparent window aligned with said detector. Also included is a disposable bandage apparatus which is at least one bandage strip having adhesive on at least a portion of at least one face thereof and at least two plastic receptacles mounted thereon, each receptacle having at least one aperture or radiation transparent window located therein. The probe housings can matedly engage said bandage receptacles and transmit and receive light through the apertures or radiation transparent windows of said mated housings and receptacles, and through the appendage of a patient. The housings of the reusable pulse oximeter probe may also be made of a material selected from plastic, rubber, metal, wood, or other composite material. The receptacles of the disposable bandage apparatus may also be made of a material selected from plastic, rubber, metal, wood, or other composite material. Additionally, the apertures of said receptacles are large enough to accept the tubular protrusions of the housings for the purpose of concentric location and alignment of the housings to the receptacles and the proper transmission and reception of light therethrough. Sandwiched between the adhesive strip and the receptacles attached thereto, are translucent silicone windows or windows of another radiation transparent material for isolation of the reusable probe assembly from the patient. The bandage apparatus may be discarded after single patient use and the reusable probe may be used again on another patient in conjunction with another bandage apparatus. Additionally, the receptacles of the bandage apparatus may have a concave surface on one side thereof in order to seat conformably on a human digit, or they may have a flat surface on at least one side thereof in order to attach conformably to a human foot, nose, or ear. The housings and receptacles also contain “mushroom hook” type hook and loop material for the purpose of adhering and detaching said housings to and from said receptacles. Additionally, the housings and receptacles have recessed areas for adhesion of the “mushroom hook” hook and loop material.
In another embodiment of the invention, the receptacle of the disposable bandage apparatus may be the mushroom hook material itself which may be attached directly to the adhesive strip for the selective engagement of the housings of the probe assembly.
In another embodiment of the invention, the housings of the pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “ring and groove” type snap-on connector.
In yet another embodiment of the invention, the housings of the reusable pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “twist and lock” type connector.
In a further embodiment of the invention, the housings of the pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “threaded flange” type of connector.
Finally, and in the first preferred embodiment of the invention, The light emitting diode and photocell detector of the probe assembly may be mounted in modular housings with locking levers which can engage an indentation or slot in the receptacles of the disposable bandage apparatus and securely lock the housings into proper position within the receptacles, thus allowing the transmission and reception of infrared light through the mated housings and receptacles and through the appendage of a patient.
In another variation of this preferred embodiment of the invention, the levers and indentations are reversed, and the light emitting diode and photocell detector of the probe assembly may be mounted in modular housings having indentations therein, and the receptacles of the disposable bandage apparatus may have the locking lever located on them. In such an embodiment, the locking levers of the bandage receptacles lockingly engage the slots or indentations in the probe housings, thus locking them into place within the receptacles and allowing the transmission and reception of infrared light through the mated probe housings and bandage receptacles, and through the appendage of a patient.
In these modular housing and receptacle embodiments the radiation transparent windows, may be of hard plastic and may be mounted against the skin of a patient, thus being used to secure the receptacles on the opposite side of the bandage strip. This is accomplished by the incorporation of locking levers on the radiation transparent windows which are pushed through holes or slots in the bandage and engage holes in the receptacles mounted on the opposite side of the bandage, thus sandwiching the bandage in between. A foam strip with holes in it may also be adhered to said radiation transparent windows in order for them to rest comfortably on a patient's appendage.
In another variation of the above, the bandage receptacles may be secured to the bandage through the use of small plastic protrusions or “heat stakes” mounted on the receptacles themselves. These protrusions can be pushed through slots in the bandage and can be melted on the other side of the bandage strip by means of an ultrasonic welding machine, thus locking the receptacles into position on the bandage strip. In this embodiment a radiation transparent window may then be adhered to the underside of the bandage strip and the heat stakes and radiation transparent windows may then be overlaid with a foam pad with holes in it, the purpose of which is to allow for the transmission and reception of infrared light through the holes while aiding in patient comfort.
REFERENCES:
patent: 4621643 (1986-11-01), New, Jr. et al.
patent: 4685464 (1987-08-01), Goldberger et al.
patent: 4700
Sensidyne Inc.
Winakur Eric F.
Zegeer Jim
LandOfFree
Reusable pulse oximeter probe and disposable bandage apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reusable pulse oximeter probe and disposable bandage apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reusable pulse oximeter probe and disposable bandage apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3247617