Retroreflective articles having microcubes, and tools and...

Optical: systems and elements – Signal reflector – 3-corner retroreflective

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S529000, C428S172000

Reexamination Certificate

active

06767102

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to tools for making microcube retroreflective elements for use in manufacturing retroreflective articles, and in particular, retroreflective sheeting; to articles and sheeting having microcubes; and to methods of making such tools and articles; This invention further relates to tools, articles, and methods wherein said microcubes may have boundary shapes other than triangular.
Microcube retroreflective sheeting is now well-known as a material for making reflective highway signs, safety reflectors, reflective vests and other garments, and other safety-related items. Such retroreflective sheeting typically comprises a layer of a clear resin, such as for example, an acrylic or polycarbonate or vinyl, having a smooth front surface and a plurality of retroreflective microcube elements on the reverse surface. Light incident on the smooth front surface passes through the sheeting, impinges on the retroreflective elements, and is reflected back out through the smooth front surface in a direction nominally 180° to the direction of incidence.
The reverse surface of the resin layer bearing the microcubes may be further provided with additional layers, such as metallization, which enhances the entrance angularity of the sheeting, or hydrophobic silica, adhesives, release liners, or other layers which otherwise contribute to the functionality of the sheeting.
Cube corner retroreflectors have been used on automobiles and for highway markings since the early 1900's. These prior art devices were based on macrocube corner elements made by the pin making art. From the use of macrocubes, a number of optical principles involving cube corner technology have been published, and some have been patented. Generally, these principles have involved changes in the size, shape or tilt of the cube faces, or of the included dihedral angles between faces, to achieve desired retroreflector performance. These known optical principles have included:
increasing the efficiency of the retroreflector at large observation angles by changing one or more of the three dihedral angles of the cube, as taught in Heenan U.S. Pat. No. 3,833,285;
increasing the efficiency of the retroreflector at large incident angles by inclining the cube axis with respect to the normal (often called “angled reflex”), taught, for example, in Leray patents U.S. Pat. No. 2,055,298 and Br. U.S. Pat. No. 423,464, and in Heenan U.S. Pat. No. 3,332,327;
increasing entrance angularity in one or more planes by including in the array cubes with cube axis cant, as taught in Heenan U.S. Pat. No. 3,873,184 and Heenan U.S. Pat. No. 3,923,378, and, in particular, by positioning one face of each of the oppositely oriented cubes more parallel to the front face of the reflector, as taught in U.S. Heenan et al U.S. Pat. No. 3,541,606 to increase entrance angularity in, two planes at right angles to each other;
increasing uniformity of retroreflectance versus orientation by rotating some cubes by varying degrees about a normal to the front surface of the article, and also by assembling them in arrays of variant dispositions, as in Uding Canadian Pat. No. 785,139; and by angling the cube axis in combination with multiple rotations, as in U.S. Pat. No. 3,923,378.
While these retroreflective optic design principles are well-known in the cube corner art, in more recent years some have attempted to patent them again in microcube sheeting technology, apparently because those persons either did not know what was done in prior macrocube technology, or chose either to ignore or to limit the applicability of the prior art teachings when applied to microcube retroreflective sheeting.
Prior to applicants' present invention, virtually all microcube sheeting has been limited to the use of microcubes made by ruling along parallel planes. This limitation is a result of the microcube dimensions being smaller than the dimensions obtainable by the cutting, polishing and lapping techniques used in the pin making art. The need to use traditional ruling techniques has inhibited the application of known optical principles to microcubes, and has, with one exception, further generally limited percent active aperture to less than 100%.
The present invention is a major advance in microcube sheeting technology. It enhances both the applicability to microcubes of prior known retroreflective optic principles and the manufacturability of microcubes of different base configurations. Before detailing these advances, further background information is provided.
Retroreflective sheeting and methods of forming the microcube retroreflective elements in such sheeting are disclosed, for example in U.S. Pricone et al. Pat. No. 4,486,363, assigned to the common assignee herein, and incorporated herein by reference in its entirety. As disclosed in such patent, the resinous layer of the sheeting may be on the order of 0.01 inch (0.25 mm) thick or less, and the retroreflective elements formed in the reverse face of the resinous layer comprise triangular microcubes such as are known in the manufacture of flexible retroreflective sheeting
To manufacture such microcube sheeting, generally a master plate of retroreflective triangular microcubes is made by ruling a pattern of retroreflective cube corners into a planar surface of the plate. This is taught generally by Stamm U.S. Pat. No. 3,712,706; is mentioned in U.S. Pat. No. 5,122,902; and is also taught in detail in U.S. Pat. No. 4,478,769, assigned to the applicants' assignee and incorporated herein by reference in its entirety.
As shown in FIGS. 1A, 2 and 3 of the '769 patent, the planar surface of a master plate is ruled with a diamond tool which cuts a series of precise parallel V-shaped grooves. To rule equilateral triangular microcubes, three sets of parallel grooves intersecting one another at angles of 60° are made; each groove also will have an included angle of substantially 70.53°, and will be ruled to a groove depth determined by the height of the microcubes desired. This automatically results in an array of oppositely oriented pairs of equilateral triangular microcubes on the face of the master.
The ruled master may then be used to make a series of duplicates, such as by electroforming, and the duplicates are assembled together to form a single “mother” tool. The assembled “mother” tool is used to electroform molds, which are then assembled and ultimately used to form a tool capable of providing the microcube retroreflective elements on the sheeting, such as by embossing, casting, or other means known in the art. A continuous embossing method is disclosed in the aforementioned U.S. Pat. No. 4,478,769; a casting technique for forming microcubes is disclosed, for example, in Rowland U.S. Pat. Nos. 3,684,348 and 3,689,346.
As will be described hereafter, triangular microcubes having bases other than equilateral triangles have been used in an effort to achieve enhanced entrance angularity by use of the well known optical principles taught in macrocube technology. Thus, as taught in applicants' assignee's commonly assigned patent Montalbano U.S. Pat. No. 4,633,567, variations of the triangular microcube may be achieved by changing the tool ruling angles (thus, canting the cube axis), thereby adopting and applying some of the prior optical principles to microcube technology. For example, it is possible to achieve arrays having different entrance angularity or orientation angularity (c.f. Rowland U.S. Pat. No. 3,684,348, col. 10, 11. 1-18 and Montalbano U.S. Pat. No. 4,633,567, col. 6, 11. 4-36)
As previously noted, U.S. Pat. No. 3,833,285, discloses that the observation angularity of cube corner retroreflection can be increased in one plane by increasing (or decreasing) one of the three dihedral angles of the cubes; U.S. Pat. Nos. 3,873,184 and 3,923,378, disclose an array of retroreflective elements wherein the cube axes of neighboring cubes are inclined with respect to each other and oppositely oriented such that the entrance angularity is increased; U.S. Pat. No. 3

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Retroreflective articles having microcubes, and tools and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Retroreflective articles having microcubes, and tools and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Retroreflective articles having microcubes, and tools and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3205231

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.