Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2000-10-31
2003-04-01
Schuberg, Darren (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S737000, C361S752000, C439S131000
Reexamination Certificate
active
06542358
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a retractable platform that is connectable to an electronic device. More particularly, the present invention relates to a retractable platform that includes a wireless or non-mechanical electrical interface that allows electrical communication to be established with an electronic device.
2. Description of Related Art
The demand for electronic devices, such as personal digital assistants (PDAs), laptop computers, palm computers, mobile telephones and digital music players, continues to expand due to a number of factors. For example, these electronic devices are often in demand because they are portable, affordable and are usable in a wide variety of situations. For instance, a laptop computer is generally portable and it can be connected to a network or communication system from a wide variety of places to send and/or receive information and data. In particular, a conventional laptop computer can be configured to be connected to a local area network (LAN), wide area network (WAN), wireless communication network, telephone network or the Internet from practically any location. Thus, conventional laptop computers allow users to conduct business or other activities at remote or mobile locations, often with performance comparable to desktop workstations. Also, the prices of electronic devices such as laptop computers continue to decline, which makes these devices more readily available to a wide variety of users.
Conventional laptop computers often include one or more slots or sockets that are configured to receive expansion cards. These expansion cards can significantly increase the capabilities of the computer by providing added features and/or capabilities. For instance, known expansion cards are often configured to function as memory cards, communication cards, network interface cards, sound cards, modems, or other devices supplying add-on functionality. Significantly, these expansion cards allow the user to customize the features and capabilities of the computer as desired by the user. Advantageously, these expansion cards are often configured according to guidelines or standards that are known in the industry to promote compatibility and interchangeability. For example, many expansion cards are constructed according to the Personal Computer Memory Card International Association (PCMCIA) guidelines or standards. PCMCIA develops and promulgates standards for the physical design, dimensions, and electrical interface of expansion devices such as expansion cards. Expansion cards that comply with the PCMCIA standards are common referred to as “PC cards.” For example, the PCMCIA guidelines set forth specific standards for Type I PC cards, Type II PC cards and Type III PC cards. Each of these PC card types has a length of 85.6 mm and a width of 54.0 mm, but the height varies according to the type of card. For example, a Type I PC cards has a height up to 3.3 mm, a type II PC card has a height up to 5.0 mm, and a Type III PC card has a height up to 10.5 mm.
These known PC cards can combine several of these features on a single card to provide added functionality, and these types of cards are commonly referred to as “combination cards” or “combo cards.” For example, a combination card may combine modem and network interface functionality so that a user can use the same card to connect to a LAN, WAN or the Internet. These combination cards may allow the user to perform these additional features or capabilities simultaneously or independently.
PC cards have become very popular because of their relatively small size, interchangeability, and capability. The industry has also developed a new generation of expansion devices with an even smaller physical size or “form factor” than that of PC cards. The new expansion devices, or cards, are commonly referred to as “compact flash” or “miniature flash” cards. A typical compact flash card has a length of 36 mm and a width of 43 mm, which requires about 1550 mm
2
of space. In contrast, a PC card with a length of 86 mm and a width of 54 mm requires about 4644 mm
2
of space, which is almost three times as much space as the compact flash card. Some examples of the devices developed for the new compact flash cards include modems, local area network cards, and memory cards that have a storage capacity of 40MB, or more.
In order to connect these expansion cards to communication systems and networks, a connector interface is provided. Conventional connector interfaces are generally rigid, protrude outwardly from the body of the expansion card, and protrude outwardly from the body of the electronic device. These protruding connector interfaces are often large, unwieldy, aesthetically unpleasing, and they make the electronic device difficult to move and transport. In addition, these connector interfaces are often bent, broken, knocked out of alignment or otherwise damaged because they can easily catch or strike foreign objects such as people, walls, doors, etc. In order to decrease the risk of damage to the connector interface, large support structures are often used to secure the connector interface to the housing of the expansion card. This large support structure requires a considerable amount of valuable space inside the body of the expansion card. Even with this large support structure, the connector interface is often damaged when it is accidentally bumped or moved. The repair and replacement of conventional connector interfaces and the associated support structure is often difficult and costly because the entire expansion card must often be replaced.
In order to alleviate these problems, the protruding connector interface should be removed before the electronic device is moved or transported. Additionally, the protruding connector interface should be removed before the electronic device is inserted into its carrying case. Disadvantageously, this requires additional time and resources to remove and reattach the connector interface each time the electronic device is moved or inserted into its carrying case. Additionally, the removable connector interface is often misplaced, lost or damaged when it is detached from the electronic device. Further, because the user often does not want to take the time and effort to remove the connector interface, the electronic device is often moved with the connector interface still attached to the electronic device and this frequently results in the connector interface being damaged or broken.
Another known connector interface uses a retraction system in which a retractable connector is slidably attached to an expansion card. The retractable connector is slidable between an extended position when it is desired to attach the expansion card to a communication system and a retracted position when the connector is stored within the expansion card. Thus, in the extended position, the retractable connector permits the expansion card to be electrically connected to a communication system or network. The retractable connector, however, cannot be connected to the communication system or network in the retracted position.
In greater detail, the known retractable connector uses a mechanical interface to permit electrical communication between the connector and the expansion card. For example, the retractable connector may use a mechanical interface such as a flexible circuit to electrically connect the connector to the expansion card. In particular, one end of the flexible circuit is attached to the connector and the other end is connected to the expansion card. The flexible circuit is typically connected to the retractable connector and the expansion card by zero insertion force (ZIF) connectors or soldering. Alternatively, the mechanical interface may include wire or pins that are physically connected to allow electrical communication between the retractable connector and the expansion card. This mechanical interface that allows electrical communication between the retractable connector and the expansion card is inherently subject
Evans John
Forte Steven Lo
Kunz Ryan A.
Price Tim Urry
3Com Corporation
Workman & Nydegger & Seeley
LandOfFree
Retractable platform with wireless electrical interface does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Retractable platform with wireless electrical interface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Retractable platform with wireless electrical interface will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3066095