Reticulated cellulose and methods of microorganisms for the...

Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S101000, C435S170000, C435S823000, C536S056000

Reexamination Certificate

active

06329192

ABSTRACT:

FIELD OF THE INVENTION
The invention concerns strains of Acetobacter that are capable of producing cellulose in artificial culture. More specifically, the Acetobacter strains according to the invention are characterized by an ability to produce large amounts of cellulose in agitated culture without manifesting instability leading to loss of cellulose production in culture. Among the Acetobacter strains according to the invention are strains additionally characterized by a substantially reduced ability to produce gluconic acid and keto-gluconic acids. The production of cellulose using such gluconate negative (glcA

) strains in artificial culture medium, is facilitated as these strains do not substantially acidify the medium, and thus increase cellulose concentration (total gm/l) and volumetric productivity. Such gluconate negative Acetobacter strains are useful in high cell concentration cultures.
The invention also concerns a bacterial cellulose product having novel properties. In particular, the invention concerns a reticulated cellulose product. This reticulated bacterial cellulose product is characterized by a microscopic structure unlike that of bacterial cellulose produced by cellulose producing microorganisms under static culture conditions.
The invention also pertains to a method for producing the reticulated cellulose product by culturing cellulose producing microorganisms for sustained periods of time, generally in excess of four hours, under agitated culture conditions. The sustained and efficient production of bacterial cellulose under agitated culture conditions was unexpected.
BACKGROUND OF THE INVENTION
The production of cellulose by Acetobacter has been the subject of intense study since at least the 1930's. In 1947, it was shown that in the presence of glucose and oxygen, non-proliferating cells of Acetobacter synthesize cellulose. Hestrin, S., Aschner, M. and Mager, J.,
Nature,
159:64 (1947). Since the observations of Hestrin et al., Acetobacter has been grown with the production of cellulose under a variety of conditions. For example, when grown with reciprocal shaking at about 90-100 cycles per minute, cells have been incorporated into a large gel mass. When grown under conditions in which the culture medium is agitated with swirling motion for four hours, stellate gel bodies form which are comprised of cellulose and cells. When grown as standing-cultures, a pellicle forms at the air/medium interface. The pellicle forms as a pad generally having the same surface shape and area as the liquid surface of the vessel containing the culture. Hestrin and Schramm,
Biochem. Journal,
58:345-352 (1954). Hestrin and Schramm observed rapid cellulose production by freeze-dried preparations of Acetobacter containing less than 10% viable cells. These experiments, however, only measured cellulose production in shaking conditions by such freeze dried preparations over a relatively short period of three to four hours, and were run under citrate buffering conditions to control significant pH changes caused by gluconic acid produced by Acetobacter in the presence of glucose.
Polysaccharide biosynthesis by Acetobacter has been studied by several groups using non-growing cultures. In some of these studies, Acetobacter strain 1499 was grown, the cells were freed from the cellulose pellicle, resuspended in 0.01 M Tris-EDTA, frozen, and then thawed as described in Hestrin and Schramm, (1954). These treated cells were used for biochemical studies under conditions that did not sustain growth of the cells, but which did preserve enzymatic activity permitting the cellulose to be synthesized by the prepared cells.
Progress in determining conditions for culturing Acetobacter for cellulose production, however, has not been the subject of wide reporting. Thus, the conditions used for culturing Acetobacter as described in U.K. patent application 2,131,701A, by Ring et al., which claims priority of U.S. patent application Ser. No. 450,324, filed Dec. 16, 1982 (now issued U.S. Pat. No. 4,588,400), are those described in Hestrin and Schramm (1954); i.e., an initial pH of about 6, temperatures in a range from 15° C. to 35° C. and preferably 20° C. to 28° C.
According to De Ley et al., “Acetobacteriacea” pp. 267-278 in
Bergeys Manual of Systematic Bacteriology,
Kreig and Holt, eds., 1st ed., William & Wilkins, Baltimore and London, 1984, the best carbon sources for growth in descending order are ethanol, glycerol and lactic acid. Acid is formed from n-propanol, n-butanol and D-glucose. The carbon sources described in U.K. application 2,131,701A include fructose, mannitol, sorbitol and glucose, all of which give rapid cellulose production, and glycerol, galactose, lactose, maltose and sucrose, all of which give slower growth. No growth was observed using sorbose, mannose, cellobiose, erythritol, ethanol, and acetic acid.
In U.K. patent application 2,131,701A it is desired to produce a coherent gel-like material for use as a wound dressing, after processing to remove the culture medium. To obtain this mat-like form, the culturing material is kept motionless during cell growth and cellulose production for a period ranging from a few hours to days or weeks.
Although the formation of a coherent mat or pellicle in motionless or standing culture conditions is the culture mode described in the U.K. patent application 2,131,701A, this patent further explains that intermittent agitation of the culture medium containing cellulose-synthesizing Acetobacter can control the length of the cellulose fibril produced by the microorganism. Intermittent agitation produces fibrils of finite length which is determined by the linear extension rate of the fibril by the microorganism and the period between agitative shearing of the fibril from the surface of the bacterium. Nothing, however, is disclosed about the effects of continuous agitation on the cellulose product.
The production of cellulose from Acetobacter in continuously agitated cultures is beset with numerous problems, the most difficult of which has heretofore been culture instability. This instability is demonstrated by loss of the ability to make cellulose and the gradual overgrowth of cellulose producing cells by non-producing types. Strain instability may be the result of the appearance of spontaneous mutants or variants of the microorganism that are cellulose non-producers. This appearance of non-producers apparently occurs with a frequency high enough to shift the population balance of a culture from cellulose-producing to cellulose non-producing types during growth in agitated culture. The loss of cellulose production in shaking cultures may also be merely the result of physiological factors rather than mutation to non-cellulose producing types due to genetic changes. Leisinger et al., Ueber cellulosefrie Mutanten von
Acetobacter xylinum, Arch. Mikrobiol,
4:21-36 (1966). Although the cause is not known, the sustained production of bacterial cellulose in agitated culture medium has not heretofore been reported.
Cellulose negative (Cel

) strains of Acetobacter have been made by chemical mutagenesis with ethyl methane sulfonate (EMS), nitrous acid and N′-nitro-N-nitroso-guanidine (NG). When grown in static cultures, all of the EMS and nitrous acid-, and 90% of the NG-mutated strains reverted to cellulose producing types. Valla et al., Cellulose-Negative Mutants of
Acetobacter xylinum, J. Gen. Microbiol.,
128(7):1401-1408 (1982). Growth of mixed cultures of cellulose producing and non-producing strains in static cultures strongly favored cellulose producing strains in static cultures, whereas growth of such mixed cultures in shake flasks favored non-producing strains. Valla et al. (1982). This result lends support to the hypothesis that the cellulose mat or pellicle produced by this microorganism enables Acetobacter cells to reach the surface of static liquid medium where the supply of oxygen is abundant. Under shaking conditions where oxygen dissolution rate and low oxygen solubility limits growth, cellulose negative st

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reticulated cellulose and methods of microorganisms for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reticulated cellulose and methods of microorganisms for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reticulated cellulose and methods of microorganisms for the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2558900

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.