Retention sleeve for a thermal medium carrying tube in a gas...

Rotary kinetic fluid motors or pumps – With passage in blade – vane – shaft or rotary distributor...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S116000, C415S134000, C416S09600A

Reexamination Certificate

active

06524062

ABSTRACT:

TECHNICAL FIELD
The present invention relates to cooling medium supply and return tubes for conveying cooling medium to and from the buckets of a gas turbine and particularly relates to retention sleeves for preventing unrestrained axial movement of the thermal medium supply and return tubes, e.g., due to thermal response.
BACKGROUND OF THE INVENTION
In an advanced gas turbine design for industrial power generation, the rotating buckets on the turbine rotor are preferably cooled by supplying a thermal medium, for example, steam, to the buckets. The steam is supplied generally through an axial bore tube assembly and radial tubes to a plurality of circumferentially spaced supply tubes extending axially adjacent the rim of the rotor. The supply tubes extend through openings in the stacked wheel and spacer arrangement of the rotor and communicate with a supply manifold adjacent a forward portion of the rotor. The manifold, in turn, includes a plurality of cross-tubes for supplying the steam to the forwardmost wheel and buckets carried thereby. Cooling steam is also supplied from the supply manifold to the buckets of the second-stage wheel. Spent cooling steam flows from the buckets of the first-stage wheel to a return manifold. Spent cooling steam also flows from the buckets of the second-stage wheel via a plurality of cross-tubes to the return manifold. The spent cooling steam is conveyed from the return manifold to the aft end of the rotor by way of return tubes circumferentially spaced about the rotor rim. The return tubes lie in communication with radially extending tubes whereby the spent cooling medium is returned axially through the bore tube assembly to a steam source or for use in steam turbines in a combined-cycle system.
Supply and return cross-tubes have in the past been provided with self-locking threaded inserts to retain the tube against axial movement. However, such designs are not acceptable because they require machine threads in the spacer wheel and limit access to the removed threaded insert if it is damaged. The cross-tubes must, however, be restrained from axial movement, e.g., motion caused by thermal response. During turbine startup and shutdown, the cross-tubes can thermally bind and unbind, causing the tubes to move axially, e.g., due to such thermal ratcheting. This causes the steam seals to disengage with subsequent loss of cooling to the buckets. There has thus developed a need for a removable, easily maintained device which can withstand high operating temperatures and large accelerations, have high cycle fatigue endurance, will not buckle under loads caused by thermal ratcheting and does not adversely affect the design of the spacer wheel.
BRIEF SUMMARY OF THE INVENTION
In accordance with a preferred embodiment of the present invention, there is provided a cross-tube retention sleeve for preventing axial movement of the thermal medium cross-tubes, e.g., due to thermal ratcheting and which does not adversely affect the performance of the spacer wheel. It will be appreciated that the cross-tubes extend through openings in the spacer and are cantilevered from axial end faces of the spacer. Spoolies interconnect the ends of the cross-tubes with additional passages in the wheels mounting the buckets. Spoolies comprise sleeves having spherical end portions for engaging within cylindrical ends of adjoining but spaced tubes. To prevent axial movement of the cross-tubes which might disengage or cause leakage in the spoolies, the present invention provides an axial retention sleeve for overlying the cantilevered end of each cross-tube between the spacer mounting the cross-tube and the end face of an adjoining wheel. Particularly, each cross-tube has a radial flange against which one end of a retention sleeve bears. The opposite end of the retention sleeve is spaced axially from the end face of the adjacent wheel, forming an axial gap accommodating limited axial movement of the retention sleeve. This limited axial movement accommodates movement, for example, resulting from thermal expansion of the cross-tubes but limits the movement to preclude binding of the tubes and disruption of the seals.
In a preferred embodiment according to the present invention, there is provided in a gas turbine rotor having stacked wheels and spacers and tubes for conveying a thermal medium between buckets of one of the wheels and a manifold, the tubes extending generally in an axial direction in openings through a spacer adjacent a rim of the rotor and having radially outwardly directed flanges, retention sleeves for limiting axial movement of the tubes in a first axial direction, each retention sleeve having a first end in opposition to an end face of a rotor wheel forming an axial gap therebetween and a second end butting the flange, whereby axial movement of the tubes closes the gaps to prevent further axial movement of the tubes in the first axial direction.
In a further preferred embodiment according to the present invention, there is provided in a gas turbine rotor having stacked wheels and spacers and first tubes for supplying cooling steam to buckets of a first rotor wheel and second tubes for returning spent cooling steam from the buckets of a second rotor wheel, the tubes extending in a generally axial direction in openings through a spacer between the first and second rotor wheels and adjacent a rim of the rotor, each of the tubes having radially outwardly directed flanges, first and second retention sleeves for preventing axial movement of the first and second tubes in respective first and second axial directions, the first retention sleeves having first ends in opposition to an end face of the first rotor wheel and forming axial gaps therewith, the second retention sleeves having first ends in opposition to an end face of the second rotor wheel and forming axial gaps therewith, each of the first and second sleeves having second ends butting respective flanges of the first and second tubes, whereby axial movement of the tubes responsive to thermal expansion thereof closes the gaps to prevent further axial movement of the first and second tubes in the first and second axial directions, respectively.


REFERENCES:
patent: 5593274 (1997-01-01), Carreno et al.
patent: 5867976 (1999-02-01), Ziegler, Jr.
patent: 0 860 587 (1998-08-01), None
patent: 913167 (1962-12-01), None
“39thGE Turbine State-of-the-Art TechnologySeminar”, Tab 1, ““F” Technolgy -the First Half-Million Operating Hours”, H.E. Miller, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 2, “GE Heavy-Duty Gas Turbine Performance Characteristics”, F. J. Brooks, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 3, “9EC 50Hz 170-MW Class Gas Turbine”, A. S. Arrao, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 4, “MWS6001FA -An Advanced-Technology 70-MW Class 50/60 Hz Gas Turbine”, Ramachandran et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 5, “Turbomachinery Technology Advances at Nuovo Pignone”, Benvenuti et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 6, “GE Aeroderivative Gas Turbines -Design and Operating Features”, M.W. Horner, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 7, “Advance Gas Turbine Materials and Coatings”, P.W. Schilke, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 8, “Dry Low NOxCombustion Systems for GE Heavy-Duty Turbines”, L. B. Davis, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 9, “GE Gas Turbine Combustion Flexibility”, M. A. Davi, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 10, “Gas Fuel Clean-Up System Design Considerations for GE Heavy-Duty Gas Turbines”, C. Wilkes, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 11, “Integrated Control Systems for Advanced Combined Cycles”, Chu et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 12, “Power Systems for the 21st Century “H” Gas Turbine Combined Cycles”, Paul et al., Aug.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Retention sleeve for a thermal medium carrying tube in a gas... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Retention sleeve for a thermal medium carrying tube in a gas..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Retention sleeve for a thermal medium carrying tube in a gas... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3138504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.