Ret ligand (RetL) for stimulating neutral and renal growth

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C530S300000, C530S350000, C536S001001, C536S018700, C536S022100, C536S023100

Reexamination Certificate

active

06677135

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to nucleotide sequences which encode a Ret ligand (RetL), as well as to methods of stimulating neural and renal growth by treating cells and mammalian subjects with Red, DNA or protein.
BACKGROUND OF THE INVENTION
One of the goals of current research on cell signaling and receptor activation is to enable therapeutic modulation of processes involved in cell growth and survival. Such processes determine outcome in diverse medical conditions, including organ failure, fetal development, and tumor growth, among others. Each of these conditions is of worldwide clinical importance, and has limited efficacious treatment options. It is an object of the invention to provide compositions and methods for promoting regeneration or survival of damaged tissue, as well as for treating disorders involving the aberrant growth and development of tissues.
Tissue loss or end-stage organ failure affects millions of people worldwide each year and adds substantially to health care costs. Organ or tissue loss is usually treated by transplanting organs from donors, by surgical reconstruction, or with mechanical devices. Each of these remedies has shortcomings. Transplantation is limited by donor shortage, surgical reconstruction can create other long-term problems, and mechanical devices cannot perform all the functions of a single organ, and therefore cannot prevent progressive deterioration. Thus, a real medical need exists for new solutions to these problems.
Protein factors that affect the growth, differentiation and/or survival of cells may be useful in the treatment of disorders of organs which contain responsive cells. Factors or ligands that interact with receptors of the receptor protein tyrosine kinase (RPTK) family are of particular interest in this regard. These receptors are involved in many cellular programs including cell growth and differentiation, and the genesis of many neoplasias. Thus the factors or ligands that interact with these receptors may prove useful in treating disorders of certain organs where the tissue has been damaged. Alternatively, it may be useful to block the interaction of these factors with their receptors in order to block tumor growth.
The Ret proto-oncogene encodes a receptor tyrosine kinase that is expressed during development in a variety of tissues, including the peripheral and central nervous systems and the kidney. The abnormalities present in ret null mice suggest that Ret is critical for the migration and innervation of enteric neurons to the hindgut, and for proliferation and branching of the ureteric bud epithelium during kidney development (Nature 367, 380-383, 1994). The search for a key component of the Ret signaling pathway, the Ret ligand, has been an area of intensive research.
SUMMARY OF THE INVENTION
The invention provides a purified and isolated DNA molecule coding for a RetL, having the nucleotide sequence of any RetL, but specifically including rat retL1 cDNA (SEQ ID NO:1), partial human retL1 cDNA (SEQ ID NO:8), full-length human retL1 cDNA (SEQ ID NO:10), human retL2 cDNA (SEQ ID NO:12), murine retL3 cDNA (SEQ ID NO:16), partial human retL3 cDNA (SEQ ID NO:18) or human retL3 cDNA (SEQ ID NO:20). The invention further provides a RetL protein, with an amino acid sequence comprising that of rat RetL1 (SEQ ID NO:2), partial human RetL1 (SEQ ID NO:9), full-length human RetL1 (SEQ ID NO:11), human RetL2 (SEQ ID NO:13), murine RetL3 (SEQ ID NO:17), partial human RetL3 (SEQ ID NO:19) or human RetL3 (SEQ ID NO:21).
In another embodiment, the invention includes a DNA sequence which encompasses the sequence (partial human retL1 cDNA (SEQ ID NO:8)) of the insert DNA of clone HRL20, which is ATCC No. 97604, or the sequence of the insert DNA of clone #230-5A-86-17 (rat retL1 cDNA (SEQ ID NO:1)), which is ATCC No. 98047.
In another embodiment of the invention, a purified and isolated DNA molecule for use in securing expression in a prokaryotic or eukaryotic host cell of a polypeptide product has at least a part of the primary structural conformation and the biological activity of RetL; the DNA may be a) a DNA molecule which comprises rat retL1 cDNA, partial human retL1 cDNA, full-length hum an retL1 cDNA, human retL2 cDNA, murine retL3 cDNA or human retL3 cDNA, or the complementary strand of rat retL1 cDNA, partial human retL1 cDNA, full-length human retL1 cDNA, human retL2 cDNA, murine retL3 cDNA or human retL3 cDNA; b) DNA molecules which hybridize under stringent conditions to the DNA molecules defined in a) or fragments thereof; or c) DNA molecules which, but for the degeneracy of the genetic code, would hybridize to the DNA molecules defined in a) and b). A purified and isolated DNA molecule coding for a polypeptide fragment or variant of a human RetL having the biological activity of a RetL is also within the invention.
Any of the recombinant DNA molecules of the invention may be operably linked to an expression control sequence.
Also included within the invention are vectors and delivery systems which encompass the DNA molecules or constructs defined elsewhere in this specification. The vector may encompass a DNA molecule encoding a RetL or a variant of a RetL.
The invention includes prokaryotic or eukaryotic host cells stably transformed or transfected by a vector comprising a DNA molecule encoding a native or variant RetL.
A purified and isolated human RetL substantially free of other human proteins is specifically within the invention, as is a process for the production of a polypeptide product having part or all of the primary structural conformation and the biological activity of a RetL. Such a process may include the steps of growing, under suitable culture conditions, prokaryotic or eukaryotic host cells transformed or transfected with any DNA molecule of the invention, in a manner allowing expression of such polypeptide product, and recovering a RetL. The polypeptide product of the expression in a procaryotic or eukaryotic host cell of a DNA is also included.
The invention also includes proteins and protein fragments, variants and derivatives, whether soluble or membrane bound. In selected embodiments, the protein has an amino acid sequence which comprises rat RetL1, partial human RetL1, full-length human RetL1, human RetL2, murine RetL3, or human RetL3, or is a variant of one of these sequences. In other embodiments, the protein is a fusion protein including Ret or a RetL, fused to another molecule or molecular fragment, such as an immunoglobulin, toxin, imageable compound or radionuclide. Also included are chimeric molecules of RetL.
Other embodiments of the invention include specific monoclonal antibodies to a RetL of the invention. Such an antibody may be associated with a toxin, imageable compound or radionuclide. The invention also includes hybridoma cell lines which produce specific antibodies to Ret, including AA.FF9, AA.HE3, AF.E9, BA.B1, BB.B6, AA.GE7, CD.F11, AH.E3, CD.G4, AG.E7, BD.G6 and BH.G8, as well as subclones of these hybridomas, and the antibodies produced by these hybridomas or subclones of these hybridomas.
The invention further includes a method of promoting growth of new tissue, or promoting survival of damaged tissue in a subject, including administering to the subject a therapeutically effective amount of a compound which interacts with cellular Ret and thereby induces autophosphorylation of Ret. The compound may be RetL1, RetL2, or RetL3, a fragment of a full-length RetL, or an antibody which binds to Ret. The compound may be administered concurrently with a therapeutically effective amount of a second compound, such as GDNF, neurturin or a GDNF-related molecule. While tissues of interest for these methods may include any tissue, preferred tissues include renal tissue, neural tissue, heart, stomach, small intestine, spinal cord, or lung. In one embodiment, the RetL is a soluble RetL. The subject of the methods may be human.
In another method of the invention, Ret signal transduction between a first cell expressing a RetL and a second cell is inhibited by contacti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ret ligand (RetL) for stimulating neutral and renal growth does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ret ligand (RetL) for stimulating neutral and renal growth, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ret ligand (RetL) for stimulating neutral and renal growth will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3210355

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.