Resuscitation from shock

Surgery – Diagnostic testing – Via monitoring a plurality of physiological data – e.g.,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S898000, C604S507000

Reexamination Certificate

active

06682481

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to the field of shock due to trauma. More particularly, the invention relates to the treatment of shock due to trauma. Specifically, a preferred implementation of the invention relates to protocols for the resuscitation of shock due to trauma or hemorrhage.
2. Discussion of the Related Art
Shock resuscitation is generally thought to be an emergent, “seat of the pants” effort to regain some normal hemodynamic and physiologic function (e.g. blood pressure, urine output or normal serum lactate concentration) in a patient after her or she has suffered severe physical trauma.
Problems with current, commonly used traumatic shock resuscitation procedures involve lack of uniformity in recognition of shock, inadequacy of interventions for resuscitation, and inadequate monitoring of resuscitation response early in the clinical course, thus increasing the potential for undesirable consequences such as multiple organ failure (MOF) if resuscitation is inadequate.
One approach, in an attempt to solve such problems, involves treatment of a trauma patient by a team of medical professionals. This team is often multi-disciplinary so as to address the immediate and ongoing needs of a major trauma patient. However, a disadvantage of this approach is that its effectiveness is often limited by the conflicting directions and recipes for resuscitation early in the clinical course.
Another problem with current methods for treatment for shock due to trauma is that available procedures and treatments are variable from practitioner to practitioner. Based on each person's experience, variables and patient symptoms could be overlooked, and mistreatment of shock is more than just a possibility.
What is required is a decision support system for resuscitation of shock due to severe trauma that starts with uniform criteria to determine need for resuscitation. A strategy for monitoring and intervention is needed that specifically maintains resuscitation as a priority and uses measurements of specific variables that reliably indicate resuscitation status with thresholds for intervention. This system should be available to personnel such as the clinician at bedside to guide the resuscitation process.
SUMMARY OF THE INVENTION
There is a need for the following embodiments. Of course, the invention is not limited to these embodiments.
In one respect, the invention involves a method of treating shock due to trauma or hemorrhage in a patient. A plurality of data elements representative of a condition of the patient are acquired, and shock in the patient is treated by following a step-by-step fixed protocol, which references the plurality of data elements.
In another respect, the invention involves a method for resuscitating a victim of shock. A risk of major organ failure is identified. Indices of peripheral perfusion deficit of the victim are determined. An oxygen delivery index of the victim is determined. The oxygen delivery index of the victim is compared to an oxygen delivery index threshold. If the oxygen delivery index of the victim is greater than or equal to the oxygen delivery index threshold: (a) the indices of peripheral perfusion deficit are compared with peripheral perfusion deficit thresholds and (b) resuscitation is ended if the indices of peripheral perfusion deficit meet the peripheral perfusion deficit thresholds. If the oxygen delivery index of the victim is less than the oxygen delivery index threshold: (a) hemoglobin concentration of the victim is compared with a hemoglobin concentration threshold, (b) one or more units of packed red blood cells is transfused if the hemoglobin concentration of the victim is less than the hemoglobin concentration threshold, (c) pulmonary artery wedge pressure of the victim is compared with a pulmonary artery wedge pressure threshold, (d) a volume loading protocol is administered if the pulmonary artery wedge pressure of the victim is less than the pulmonary artery wedge pressure threshold, (e) responses of the pulmonary artery wedge pressure and cardiac index of the victim are monitored to determine if the pulmonary artery wedge pressure and cardiac index are optimized, and (f) a Starling Challenge is administered if the pulmonary artery wedge pressure and cardiac index are not optimized.
In another respect, the invention involves a method for implementing a volume loading protocol for resuscitating a victim of shock. A first volume of Ringer's lactate bolus is administered to the victim. A change in pulmonary artery wedge pressure of the victim is determined in response to the administering of the first volume. A second volume of Ringer's lactate bolus is administered to the victim if the change in pulmonary artery wedge pressure is less than a first specified increment. The pulmonary artery wedge pressure of the victim is measured. A third volume of Ringer's lactate bolus is administered to the victim if the pulmonary artery wedge pressure of the victim is less than a second threshold.
In another respect, the invention involves a method for implementing a Starling Challenge for resuscitating a victim of shock due to trauma or hemorrhage. A first volume of solution is administered to the victim. A change in pulmonary artery wedge pressure of the victim is determined in response to the administering of the first volume. A second volume of the solution is administered to the victim if the change in pulmonary artery wedge pressure is less than a first specified increment. A change in cardiac index of the victim in response to the administering of the solution is determined. If the change in pulmonary artery wedge pressure is greater than or equal to the first specified increment and less than or equal to a second specified increment: (a) a third volume of the solution is administered to the victim if the change in cardiac index is greater than or equal to a third specified increment and (b) the protocol is ended if the change in cardiac index remains less than the third specified increment after two consecutive administrations of a fourth volume of the solution to the victim. If change in pulmonary artery wedge pressure is greater than the second specified increment: (a) a fifth volume of the solution is administered to the victim if the change in cardiac index is greater than or equal to a fourth specified increment and (b) the protocol is ended if the change in cardiac index remains less than the fourth specified increment after two consecutive administrations of a sixth volume of the solution to the victim.
In another respect, the invention involves a method for implementing a vasopressor and inotrope therapy for resuscitating a victim of shock. If mean arterial pressure of the victim is less than an arterial pressure threshold: (a) a vasopressor agent is administered at a first rate, (b) mean arterial pressure in response to the vasopressor agent is determined, and (c) the vasopressor agent is administered at a second rate, the second rate being greater than the first rate and less than a first maximum rate, until the mean arterial pressure meets or exceeds the arterial pressure threshold. If mean arterial pressure of the victim is greater than or equal to the arterial pressure threshold and an oxygen delivery index of the victim is less than an oxygen delivery index goal: (a) an inotrope agent is administered at a third rate, (b) hemodynamic performance in response to the inotrope agent is determined, and (c) the inotrope agent is administered at a fourth rate, the fourth rate being greater than the third rate and less than a second maximum rate, until the hemodynamic performance meets a hemodynamic performance goal.
In another respect, the invention involves software and/or specialized devices to implement the methods described herein.


REFERENCES:
patent: 4291692 (1981-09-01), Bowman et al.
patent: 4839822 (1989-06-01), Dormond et al.
patent: 5023785 (1991-06-01), Adrion et al.
patent: 5055447 (1991-10-01), Palladino et al.
patent: 5330505 (1994-07-01),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resuscitation from shock does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resuscitation from shock, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resuscitation from shock will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3252024

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.