Respiratory gas consumption monitoring device and monitoring...

Surgery – Diagnostic testing – Respiratory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06258039

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a device for measuring and monitoring consumption of the respiratory gas that is used to fill a high pressure gas container employed in such breathing apparatuses as air respirators used in land disasters, oxygen respirators used in medical treatment, or the respirators employed by scuba divers in the water. The present invention's respiratory gas consumption monitoring device may also be employed to measure and monitor changes in the user's respiratory volume, or the like. More specifically, the present invention relates to a respiratory gas consumption monitoring device and monitoring method which can be suitably employed to measure and monitor respiratory gas consumption per breath; the amount of respiratory gas used per operation of the device; and changes in respiratory volume or respiratory gas consumption which arise depending on whether or not the user is active, or on the type of activity being performed.
This specification is based on a patent application filed in Japan (Japanese Patent Application Hei 10-8093), a portion of which is incorporated herein by reference.
BACKGROUND ART
A flow meter employing a specialized sensor for capturing changes in the flow speed of a gas along a flow path, such as a hose through which the gas is flowing, is used to measure of respiratory volume, a value which is employed in the fields of medical treatment and physiological research. Respiratory flow meters such as these are (1) directly applied to the mouth of a person, (2) incorporated into the inhalation or exhalation duct system, etc., and are used for obtaining measurements in the case where the subject is a human being confined in a room where movement and activities are minimal. This type of flow meter device is not appropriate for measurements in the case where the subject is a human being who is exercising or performing activities that are accompanied by movement. In addition, in order to measure the respiratory volume of a user who is wearing the breathing apparatus, the gas circuit such as the arrangement of the piping and devices for measuring results in a large device. As a result, the device cannot be made portable for the user. Furthermore, it has been technically difficult to employ the aforementioned flow meters to measure respiratory volume in breathing apparatuses provided with a demand pressure regulator, in which respiratory gas stored at high pressure is inhaled during breathing.
A method has been attempted in which lung capacity, which is a primary factor in determining respiration in humans and animals, is estimated based on changes in form as a method for measuring respiratory volume without employing a flow meter. However, from the perspective of accuracy and practical application in the water or under other such specialized conditions, this method has not yet reached the point where it can be used in the field.
On the other hand, dive computers have been developed in recent years for scuba diving with the intention of making diving safer by preventing decompression sickness. Among these devices, there are those that measure the gas pressure (residual pressure) in the high pressure gas container. However, these devices have as their main objective the display of the gas remaining and the provision of a warning to the user, and lack the fine sensitivity or accuracy for measuring gas consumption per breath taken by the diver.
In any case, the conventional technology has not yet provided a device for directly measuring the volume of the gas itself as an indicator of the respiratory gas consumption value.
DISCLOSURE OF INVENTION
The present invention was conceived in consideration of the above-described circumstances, and has as its objective the provision of an easy-to-use respiratory gas consumption monitoring device and monitoring method that enable extremely accurate measurements, and do not require a flow meter or complicated piping, so that the device may be made small enough to enable portability by a user who is wearing it, the present invention's respiratory gas consumption monitoring device and monitoring method being intended to replace conventional methods for measuring flow speed in a piping through which gas flows, or making estimates based on changes in the human physique, which have been problematic with respect to maintaining accuracy when measuring respiratory gas consumption. As a result, the present invention aims to be used effectively as a monitoring measurement device for measuring the respiratory state of a worker performing an activity in the field, such as in the water, for grasping differences in the degree of fatigue based on the type of activity; and for investigating and clarifying the cause of the fatigue.
In order to resolve the aforementioned problems and achieve the stated objectives, the present invention's respiratory gas consumption monitoring device for a breathing apparatus reduces the pressure of respiratory gas supplied from a high pressure gas container via the use of a pressure regulator, and supplies the gas to the breathing mask worn by the user, the present invention's respiratory gas consumption monitoring device being characterized in the provision of a primary pressure sensor for detecting the primary pressure in the high pressure gas container before the pressure is reduced by the pressure regulator; an amplifier for amplifying the signal detected by the primary pressure sensor; an A/D converter for performing analog/digital conversion of the signal; a data logger for storing the analog/digital converted signals; and a display for displaying the signals or data needed for monitoring the respiratory state of the user of the breathing apparatus.
In the present invention's respiratory gas consumption monitoring device for a breathing apparatus, a primary pressure sensor may be connected to the amplifier, along with at least one of either a surrounding environmental pressure sensor and a temperature sensor for correcting the signals detected by the primary pressure sensor in accordance with the gas temperature and surrounding environmental pressure states.
In the present invention's respiratory gas consumption monitoring device for a breathing apparatus, a computer having at least one of the functions of calculating respiratory gas consumption, and the analyzing and predicting respiratory behavior may be provided connected to the data logger, which stores the analog/digitally converted signals.
The present invention's respiratory gas consumption monitoring device for a breathing apparatus may be provided with a transmitting and receiving apparatus having a function for enabling transmission and reception of data at a site which is removed from the location of the user of the breathing apparatus.
In the present invention's respiratory gas consumption monitoring device for a breathing apparatus, the signal and data displayed on the display device may be designed to display at least one signal and data for expressing the respiratory gas consumption state, respiratory behavior of the user of the breathing apparatus, or the environmental state at the location where the breathing apparatus is being used.
In the present invention's method for monitoring respiratory gas consumption using the aforementioned device, when monitoring respiratory gas consumption in a breathing apparatus in which the respiratory gas from a high pressure gas container is communicated to a breathing mask worn by the user after being reduced in pressure by a pressure regulator, the respiratory gas consumption of the user wearing the breathing apparatus is measured by detecting changes in the primary pressure of the high pressure gas container prior to reduction of the pressure by the pressure regulator.
In the present invention's method for monitoring respiratory gas consumption, the detection of changes in the primary pressure of the high pressure gas container may be measured after correcting in response to changes in the state of at least one

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Respiratory gas consumption monitoring device and monitoring... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Respiratory gas consumption monitoring device and monitoring..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Respiratory gas consumption monitoring device and monitoring... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2467052

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.