Respiratory apparatus with improved flow-flattening detection

Surgery – Respiratory method or device – Means for supplying respiratory gas under positive pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S204230

Reexamination Certificate

active

06814073

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method and apparatus for detecting obstruction of the airway of a patient. More specifically, the invention involves an improved method and apparatus for detecting obstruction, either partial or complete, based upon a flattened measure of an inspiratory portion of respiratory airflow. The method is useful in patient ventilators such as those used in the diagnosis and treatment of respiratory conditions including sleep apnea or hypopnea.
BACKGROUND OF THE INVENTION
The dangers of obstructed breathing during sleep are well known in relation to the Obstructive Sleep Apnea (OSA) syndrome. Apnea, hypopnea and heavy snoring are recognized as causes of sleep disruption and risk factors in certain types of heart disease.
The monitoring of upper airway pressure-flow relationships in obstructive sleep apnea has been described in Smith et al., 1988
, J. Appl Physiol
. 64: 789-795.
FIG. 1
of that article shows polygraphic sleep recordings at varying levels of increasing nasal pressure. It was noted that inspiratory volumetric flow plateaued in certain breaths suggesting the presence of airflow limitation. Pressure-flow curves were constructed by plotting midinspiratory airflow against either mask pressure or endoesophageal pressure. The pressure-flow plots of nasal pressure against mean midinspiratory flow were then fit by least-squares linear regression to calculate resistance upstream to the collapsible site.
The effect of positive nasal pressure on upper airway pressure-flow relationships has been described in Schwartz et al., 1989
, J. Appl Physiol
. 66: 1626-1634.
FIG. 4
of the article shows that pressure-flow tracings plateau at a low pressure level. It was further shown when the pressure was increased, flow did not plateau.
The common method of treatment of these syndromes is to administer Continuous Positive Airway Pressure (CPAP). The procedure for administering CPAP treatment has been documented in both the technical and patent literature. Briefly stated, CPAP treatment acts as a pneumatic splint of the airway by the provision of a positive pressure, usually in the range 4-20 cm H
2
O. The air is supplied by a motor driven blower whose output passes via an air delivery device to sealingly engage a patient's airway. A mask, tracheotomy tube, endotracheal tube, nasal pillows or other appropriate device may be used. An exhaust port is provided in a delivery tube proximate to the air delivery device. Other forms of CPAP, such as bi-level CPAP, and self-titrating CPAP, are described in U.S. Pat. Nos. 5,148,802 and 5,245,995 respectively.
With regard to the control of CPAP treatment, various techniques are known for sensing and detecting abnormal breathing patterns indicative of obstruction. For example, U.S. Pat. No. 5,245,995 describes how snoring and abnormal breathing patterns can be detected by inspiration and expiration pressure measurements while sleeping, thereby leading to early indication of preobstructive episodes or other forms of breathing disorder. Particularly, patterns of respiratory parameters are monitored, and CPAP pressure is raised on the detection of pre-defined patterns to provide increased airway pressure to ideally prevent the occurrence of the obstructive episodes and the other forms of breathing disorder.
Similarly, U.S. Pat. No. 5,335,654 (Rapoport) lists several indices said to be indications of flow limitation and/or partial obstruction patterns including: (1) The derivative of the flow signal equals zero; (2) The second derivative between peaks of the flow signal is zero for a prolonged interval; (3) The ratio of early inspirational flow to midinspirational flow is less than or equal to 1. The patent further lists events said to be indications of obstructions: (1) Reduced slope of the line connecting the peak inspiratory flow to the peak expiratory flow; (2) Steep upward or downward stroke (dV/dt) of the flow signal; and (3) Ratio of inspiratory flow to expiratory flow over 0.5.
U.S. Pat. No. 5,645,053 (Remmers) describes calculating a flatness index, wherein flatness is defined to be the relative deviation of the observed airflow from the mean airflow. In Remmers, individual values of airflow are obtained between 40% and 80% of the inspiratory period. The mean value is calculated and subtracted from individual values of inspiratory flow. The individual differences are squared and divided by the total number of observations minus one. The square root of this result is used to determine a relative variation. The relative variation is divided by the mean inspiratory airflow to give a relative deviation or a coefficient of variation for that breath.
In commonly owned U.S. Pat. No. 5,704,345, Berthon-Jones also discloses a method for detecting partial obstruction of a patient's airway. Generally, the method involves a determination of two alternative obstruction index values based upon the patient's monitored respiratory airflow. Either obstruction index may then be compared to a threshold value. Essentially, the index values may be characterized as shape factors that detect a flattening of an inspiratory portion of a patient's respiratory airflow. The first shape factor involves a ratio of the mean of a midportion of the inspiratory airflow of the breathing cycle and the mean of the inspiratory airflow. The formula for shape factor 1 is as follows:
shapefactor_

1
=
1
33


t
=
16
48



f
s

(
t
)
M
where f
s
(t) is a sample of the patient's inspiratory airflow and M is the mean of inspiratory airflow given by the following:
M
=
1
65


t
=
1
65



f
s

(
t
)
A second shape factor involves a ratio of the Root Mean Square deviation of a midportion of inspiratory airflow and the mean inspiratory airflow according to the formula:
shapefactor_

2
=
1
33


t
=
16
48



(
f
s

(
t
)
-
M
)
2
M
Berthon-Jones further discloses a scaling procedure applied to the inspiratory airflow samples such that the mean M of the samples f
s
(t) is unity (M=1). This scaling procedure simplifies both shape factor formulas. Additional adjustments to f
s
(t) including averaging and the elimination of samples from erratic breaths such as coughs, sighs, hiccups, etc., are also taught by Berthon-Jones. The foregoing U.S. Patent is hereby incorporated by reference.
The present invention involves an improved method and apparatus for detecting some forms of obstruction based upon the flattening of the inspiratory airflow.
BRIEF DESCRIPTION OF THE INVENTION
An objective of the present invention is to provide an apparatus in which obstruction, either partial or complete, of the patient's airway is detected by analyzing respiratory airflow.
A further objective is to provide an apparatus in which a novel algorithm for detecting airway obstruction is implemented without using additional components or making substantial changes to the structure of existing respiratory apparatus.
Accordingly, a respiratory apparatus is provided in which the respiratory airflow of a patient is continuously monitored. The part of respiratory airflow associated with inspiration is identified and sampled. From these inspiration samples, several samples representing a midportion of inspiration are identified. One or more weighting parameters or weighting factors are associated with each midportion sample. These weights and midportion samples are then used to calculate an obstruction index. Finally, this obstruction index is compared to a threshold value which comparison is used to adjust or control ventilatory assistance.
In one embodiment, weighting factors are applied based on whether the inspiratory airflow samples are less than or greater than a threshold level, such as the mean airflow.
In another embodiment, different weighting factors are applied to samples based on their time positions in a breath. Samples taken prior to a certain event during inspiration, for example, samples preceding the half way point of inspiration, are assi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Respiratory apparatus with improved flow-flattening detection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Respiratory apparatus with improved flow-flattening detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Respiratory apparatus with improved flow-flattening detection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3316508

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.