Resorbable extracellular matrix for reconstruction of...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Matrices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S428000

Reexamination Certificate

active

06676969

ABSTRACT:

DETAILED DESCRIPTION OF THE INVENTION
The present invention concerns an extracellular matrix for reconstruction of cartilage tissue.
In tissue engineering, it has long proved difficult to reconstruct cartilage. Reconstruction of tissue, in general, comprises provision of a matrix which serves as a guide for cells which grow along and between the fibres of the matrix. Hitherto, attempts to reconstruct cartilage, using matrices based on polylactic acid, polyglycolic acid and collagen I or III, required the matrices to be loaded in vitro with chondrocytes prior to implantation of the loaded matrix in an appropriate in vivo site. It had not proved possible simply to implant the matrices of this type at the in vivo site and rely on growth of the native chondrocites on the surface of the matrix. The need to load the matrix with chondrocytes in vitro prior to implantation gave rise to complications and difficulties in terms of the sterile culture of the chondrocytes.
There is thus a need for a matrix implant for reconstruction of cartilage tissue which will permit in-growth of native chondrocytes after implantation in vivo. We have now found that these requirements may be met by a matrix of collagen fibres, provided that the collagen is predominantly collagen II.
Collagen occurs in a number of forms in the animal body and different tissues contain different proportions of the respective types. Thus, whereas bone collagen comprises predominantly collagen I and III, cartilage comprises predominantly collagen II together with smaller quantities of collagen VI, IX, X, XI and XIII. Such material differs significantly from collage sponge material used in medicine and in cosmetics which, being derived from skin and tendons consists of collagen I and/or III.
According to one aspect of the present invention, therefore, there is provided a resorbable extracellular matrix for reconstruction of cartilage tissue comprising predominantly fibres of collagen II.
As indicated above, such a matrix may contain minor quantities of collagen VI, IX, X, XI and XIII. The matrix according to the invention desirably also contains a hydrogel-like material, for example comprising glycosaminoglycans such as chondroitin sulphate, keratan sulphate, dermatan sulphate and hyaluronic acid, which provides a natural medium in which chondrocytes can become embedded and grow in general, the matrix according to the invention preferably contains 0.1 to 40% by weight of glycosaminoglycan, for example 5-15% e.g. about 10% by weight.
The matrix according to the invention may either comprise natural cartilage material which has been subjected to defatting and other treatment, leaving the collagen II material together with glycosaminoglycans, or alternatively fibres of purified collagen II may be mixed with glycosaminoglycans and any other required additives. Such additional additives may, for example, include chondronectin or anchorin II to assist attachment of the chondrocytes to the collagen II fibres and growth factors such as cartilage inducing factor (CIF), insulin-like growth factor (IGF) and transforming growth factor &bgr; (TGF&bgr;).
There exists a wide range of glycosaminoglycans and proteoglycans which have different and sometimes undesirable properties. Thus, although it is possible to incorporate into the collagen matrix glycosaminoglycans from different sources which do not have the same composition, molecular weight and physiological properties as glycosaminoglycans from cartilage, it is particularly preferred to use glycosaminoglycans from cartilage itself.
It is desirable to subject the collagen matrix to some degree of cross-linking in order to restrict the extent of swelling when the matrix comes in contact with aqueous fluids, while retaining the ability of the matrix to be resorbed. Such swelling leads to loss of strength and shape. However, chemical cross-linking at may present physiological disadvantages in terms of pore size which could negatively influence the properties of the collagen. The pore size should optionally be around 0.4&mgr; in order to promote chemotaxis and other functions of the cells. The collagen matrix according to the invention may advantageously be manufactured by subjecting cartilage tissue to defatting followed by treatment with a base whereby proteoglycans and glycosaminoglycans are removed.
The cartilage material will normally be that from readily available animal sources such as cattle, sheep or pigs. The preferred material is hyaline cartilage from pigs. This contains the right type of collagen and glycosaminoglycan in desirable proportions and is available in suitably large quantities.
The cartilage is preferably frozen after slaughter and subjected to size reduction, for example to a particle diameter of about 8 mm. Before size reduction, the cartilage is preferably soaked in water and mechanically separated from flesh, bone and other unwanted materials.
The particulate cartilage is then preferably subjected to dewatering by treatment with a water miscible organic solvent such as acetone, which also serves to remove some fat. The dewatering shrinks the collagen fibres and separates them from each other so that the subsequent defatting step is optimised. The material is then subjected to defatting with a fat-solvent such as a hydrocarbon e.g. hexane, or a halogenated hydrocarbon.
After defatting, the material is thoroughly washed and this is continued until as much water has been taken up as was present originally. By this procedure, the material is optimised for the base-treatment which follows.
The base-treatment may be effected with a strong alkali, for example and alkali metal hydroxide, eg. sodium hydroxide, for example at a concentration of 1-8% by weight. The treatment time, which will vary according to the raw material and alkali concentration, is generally 10-48 hours. The treatment temperature will generally be below 20° C. The pH value is normally in the range 12-14. The above conditions are those which are optimal for treatment with NaOH. Treatment with other bases may require slightly modified conditions.
The base-treatment has the following effects:
Small quantities of residual fat are saponified.
The non-collagen, alkali soluble proteins are denatured, destroyed, dissolved and eliminated.
The amide groups in the collagen are saponified, thereby changing the electric charge and the isoelectric point of the collagen.
Bacteria, prions and viruses are inactivated and the collagen is thus sterilised.
It has been found that by this treatment, proteoglycans undergo a useful modification which can be characterised as follows:
the covalent binding of glycosaminoglycans to the core protein in proteoglycans is cleaved. In this way the glycosaminoglycans can be liberated from the protein of the proteoglycans. This is termed &bgr;-elimination.
By the base-treatment, the core protein is split into small peptides which may be removed from the reaction mixture by dialysis or ultra filtration.
Due to the strong negative charge, the glycosaminoglycans form water soluble salts which can partially washed from the collagen. These are, however, uncleaved or only slightly cleaved by the base-treatment and can be separated from peptides by dialysis. A part of the glycosaminoglycan (about 3% by weight of the collagen) is bound to the collagen.
Purified glycosaminoglycans may be obtained by dialysis or ultrafiltration of the extract arising from the base-treatment step.
According to the procedure of the present invention, enzymatic treatment is, in general, not used, in view of the variety of different substances present. However, further steps include treating the material with an organic or inorganic acid, such as hydrochloric acid. This has the following effect:
Unwanted acid sensitive materials are removed;
The fibre structure is loosened.
Subsequently, the material is washed, generally until the pH value of the material is between 2.5 and 4.0. The pH value of the material is preferably controlled accurately. The pH value of the material should be uniform across the cross-section

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resorbable extracellular matrix for reconstruction of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resorbable extracellular matrix for reconstruction of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resorbable extracellular matrix for reconstruction of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3185904

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.