Resonant reflector for improved optoelectronic device performanc

Coherent light generators – Particular resonant cavity – Distributed feedback

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

372 45, 372 50, H01S 319, H01S 308

Patent

active

06055262&

ABSTRACT:
Optoelectronic devices such as VCSEL and RCPD devices that have integrated resonant reflectors. The integrated resonant reflector may be made conductive so that bias current can pass therethrough. This may allow more flexibility in the design of the VCSEL and RCPD devices.
Since making the resonant reflector more conductive typically reduces the overall reflectivity of the resonant reflector, the resonant reflector may be provided in combination with a Distributed Bragg Reflector (DBR) mirror to achieve the desired overall reflectance for a VCSEL or RCPD design. A broad bandwidth resonant reflector may also be provided. The bandwidth may be sufficiently wide to increase the reliability of data communication between such devices, and may be sufficiently narrow to maintain adequate mode control and mode stability. These devices may be used to support polarization-, space- and/or wavelength-division multiplexing applications.

REFERENCES:
patent: 4466694 (1984-08-01), MacDonald
patent: 5115442 (1992-05-01), Lee et al.
patent: 5216680 (1993-06-01), Magnusson et al.
patent: 5475701 (1995-12-01), Hibbs-Brenner
patent: 5555255 (1996-09-01), Kock et al.
patent: 5561683 (1996-10-01), Kwon
patent: 5568499 (1996-10-01), Lear
patent: 5598300 (1997-01-01), Magnusson et al.
patent: 5727013 (1998-03-01), Botez et al.
patent: 5818066 (1998-10-01), Duboz
Graf, Rudolph, Modern Dictionary of Electronics, 6th ed., Indiana: Howard W. Sams & Company, Jan. 1984, p. 694.
Patent Abstracts of Japan, vol. 009, No. 280 (E-356), Nov. 8, 1985 and JP 60 123084A (Matsushita Denki Sangyo KK), Jul. 1, 1985.
Patent Abstracts of japan, vol. 014, No. 222 (E-0926), May 10, 1990 and JP 02 054981 A (Fujitsu Ltd.), Feb. 23, 1990.
Schubert E F et al: "Resonant Cavity Light-Emitting Diode" Applied Physics Letters, vol. 60, No. 8, Feb. 24, 1992, pp. 921-923, XP000292182.
Smith R E et al: "Polarization-Sensitive Subwavelength Antireflection Surfaces on a Semiconductor for 975 NM", Optics Letters, vol. 21, No. 15, Aug. 1, 1996, pp. 1201-1203, XP000622118.
Suning Tang et al: "Design Limitations of Highly Parallel Free-Space Optical Interconnects Based on Arrays of Vertical Cavity Surface-Emitting Laser Diodes, Microlenses, and Photodectectors", Journal of Lightwave Technology, vol. 12, No. 11, Nov. 1, 1994, pp. 1971-1975, XP000485315.
Cox JA et al: "Guided Mode Grating Resonant Filters for VCSEL Applications" Proceedings of the SPIE, The International Society for Optical Engineering, Diffractive and Holographic Device Technologies and Applications V San Jose CA USA Jan. 28-29, 1998, vol. 3291, pp. 70-71, XP002077648.
S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters", Appl. Opt., vol. 32, No. 14, pp. 2606-2613 (May 1993).
S. S. Wang and R. Magnusson, "Multilayer waveguide-grating filters", Appl. Opt., vol. 34, No. 14, pp. 2414-2420 (May 1995).
Y. M. Yang, M. H. Macdougal, and P. D. Dapkus, "Ultralow threshold current vertical cavity surface emitting lasers obtained with selective oxidation", Elect. Lett., vol. 31, No. 11, pp. 886-888 (May 25, 1995).
K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, "Selectively oxidized vertical cavity surface-emitting lasers with 50% power conversion efficiency", Elec. Lett., vol. 31, No. 3, pp. 208-209 (Feb. 2, 1995).
G. Shtengel, H. Temkin, P. Brusenbach, T. Uchida, M. Kim, C. Parsons, W. E. Quin and S. Swirhun, "High-Speed Vertical-Cavity Surface-Emitting Lasers", Photon. Tech. Lett., vol. 5, No. 12, pp. 1359-1361 (Dec., 1993).
R. A. Morgan, J. A. Lehman and M. K. Hibbs-Brenner, "Vertical Cavity Surface Emitting Laser Arrays: Come of Age," Invited paper, published in SPIE vol. 2683-04, OE LASE 96; Photonics West: Fabrication, Testing, and Reliability of Semiconductor Lasers, (SPIE, Bellingham, WA, 1996).
J. A. Lehman, R. A. Morgan, M. K. Hibbs-Brenner, and D. Carlson, "High-frequency modulation characteristics of hybrid dielectric/AlGaAs Single-mode VCSELs", Electron. Lett., vol. 31, No. 15, pp. 1251-1252 (Jul. 20, 1995).
R. A. Morgan, M. K. Hibbs-Brenner, T. M. Marta, R. A. Walterson, S. Bounnak, E. L. Kalweit, and J. A. Lehman, "200C, 96-nm Wavelength Range, Continuous-Wave Lasing From Unbonded GaAs MOVPE-Grown Vertical Cavity Surface Emitting Lasers", IEEE Phot. Tech. Lett., vol. 7, No. 5, pp. 441-443 (May, 1995).
L. A. Hornak, J. C. Barr, W. C. Cox, K. S. Brown, R. A. Morgan, and M. K. Hibbs-Brenner, "Low-Temperature (10K--300K) Characterization of MOVPE-Grown Vertical-Cavity Surface-Emitting Lasers", Photon. Tech. Lett., vol. 7., No. 10, pp. 1110-1112 (Oct., 1995).
R. A. Morgan, K. Kojima, M. T. Asom, G. D. Guth, and M. W. Focht, "One Watt Vertical Cavity Surface Emitting Laser", Electron. Lett., vol. 29, No. 2, pp. 206-207 (Jan. 21, 1993).
D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine and L. A. Coldren, "Enhanced Performance of Offset-Gain High-Barrier Vertical-Cavity Surface-Emitting Lasers", IEEE J. Quantum Electron., vol. 29, No. 6, pp. 2013-2022, (Jun., 1993).
R. A. Morgan, M. K. Hibbs-Brenner, R. A. Walterson, J. A. Lehman, E. L. Kalweit, S. Bounnak, T. Akinwande and J. C. Nohava, "Producible GaAs-based MOVPE-grown vertical-cavity top-surface emitting lasers with record performance", Elec. Lett., vol. 31, No. 6, pp. 462-464 (Mar. 16, 1995).
M. K. Hibbs-Brenner, R. A. Morgan, R. A. Walterson, J. A. Lehman, E. L. Kalweit, S. Bounnak, T. M. Marta and R. Gieske, "Performance, Uniformity and Yield of 850nm VCSELs Deposited by MOVPE", IEEE Phot. Tech. Lett., vol. 8, No. 1, pp. 7-9 (Jan., 1996).
J. K. Guenter, R. A. Hawthorne, III, D. N. Granville, M. K. Hibbs-Brenner and R. A. Morgan, "Reliability of proton-implanted VCSELs for data communications", Invited paper, published in SPIE vol. 2683, OE LASE 96; Photonics West: Fabrication, Testing, and Reliability of Semiconductor Lasers, (SPIE, Bellingham, WA, 1996). (no month available).
Y. H. Lee, B. Tell, K. Brown-Goebler and J. L. Jewell, "Top-Surface-Emitting GaAs Four-Quantum-Well Lasers Emitting at 0.85mm", Electron. Lett., vol. 26, No. 11, pp. 710-711, (May 24, 1990).
D. L. Huffaker, J. Shin and D. G. Deppe, "Lasing characteristics of low threshold microcavity layers using half-wave spacer layers and lateral index cofinement", Appl. Phys. Lett., vol. 66, No. 14, pp. 1723-1725 (Apr. 3, 1995).
E. Yablonovitch, "Photonic Bandgap structures", J. Opt. Soc. Am. B, vol. 10, No. 2, pp. 283-295, (Feb., 1993).
R. A. Morgan, M. K. Hibbs-Brenner, J. A. Lehman, E. Kalweit, R. Walterson, T. Marta and T. Akinwande, "Hybrid Dielectric/AlGaAs Mirror Spatially-Filtered Vertical Top-Surface Emitting Laser", Appl. Phys. Lett., vol. 66, No. 10, pp. 1157-1159 (Mar. 6, 1995).
E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu and G. J. Zydzik, "Resonant cavity light-emitting diode", Appl. Phys. Lett., vol. 60, No. 8, pp. 921-923 (Feb. 24, 1992).
J. L. Jewell et al., "Surface Emitting Microlasers for Photonic Switching & Intership Connections", Optical Engineering, vol. 29, No. 3, pp. 210-214, Mar. 1990.
Morgan, Transverse Mode Control of Vertical-Cavity Top-Surface-Emitting Lasers, IEEE Phot. Tech. Lett., vol. 4, No. 4, p. 374, Apr. 1993.
Magnusson, "Integration of Guided-Mode Resonance Filters and VCSELs", Electro-Optics Research Center, Department of Electrical Engineering, University of Texas at Arlington, May 6, 1997.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resonant reflector for improved optoelectronic device performanc does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resonant reflector for improved optoelectronic device performanc, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resonant reflector for improved optoelectronic device performanc will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-999544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.