Resonant mode active matrix TFEL display excitation driver with

Computer graphics processing and selective visual display system – Plural physical display element control system – Display elements arranged in matrix

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

345211, G09G 330

Patent

active

057933421

ABSTRACT:
Energizing an active matrix electroluminescent device with a generally sinusoidal illumination waveform causes the electroluminescent layer to emit light. A sinusoidal waveform minimizes the peak currents reducing the likelihood of burnouts and decreases the imposed voltages on the data lines increasing the likelihood that the high voltage transistors will function as intended. Preferably, the sinusoidal waveform is generated by using a single 12 volt power source which reduces the expense, weight and bulk of the electroluminescent device. The 12 volt power source may be used to operate an operational amplifier that receives a small sinusoidal input signal and produces a low voltage generally sinusoidal waveform that is amplified by a step-up transformer for energizing the transparent electrode layer of the device so as to cause the electroluminescent layer to emit light. Furthermore, the use of a generally low voltage operational amplifier permits the routing of a 12 volt power signal from a remote power source, such as a battery, to a head-mounted active matrix electroluminescent device, reducing safety concerns routing of high voltage signals near the body of the user.

REFERENCES:
patent: 4574342 (1986-03-01), Runyan
patent: 4633141 (1986-12-01), Weber
patent: 4733228 (1988-03-01), Flegal
patent: 5093654 (1992-03-01), Swift
patent: 5302966 (1994-04-01), Stewart
patent: 5517089 (1996-05-01), Ravid
32.2: Charge Modulation Gray-Scale Method with Profiled Current Pulses for ACTFEL Displays by M.H. Aberg, VTT Technical Research Centre of Finland, Semiconductor Laboratory, Espoo, Finland, SID 93 Digest, pp. 765-768.
"19.5: Electrical Characterization and Modeling of ZnS:Mn ACTFEL Devices with Various Pulse Waveforms" by A.A. Douglas, J.F. Wager, Oregon State University, Corvallis, OR, SID 92 Digest, pp. 356-359.
"16-Level Gray-Scale Driver Architecture and Full-Color Driving for TFT-LCD" by K. Takahara, T. Yamaguchi, M. Oda, H. Yamaguchi, M. Okabe, Fujitsu Limited, Atsugi, Japan, 1991 IEEE, pp. 115-118.
"11.3: High-Resolution Active-Matrix Electroluminescent Display" by R. Khormael, S. Thayer, K. Ping, C. King, Planar Systems, Beaverton, OR; G. Dolny, A. Ipri, F-L. Hsueh, R. Stewart, David Sarnoff Research Center, Princeton, NJ; T. Keyser, G. Becker, D. Kagey, Allied Signal Aerospace Corp., Columbia, MD; and M. Spitzer, Kopin Corp., Taunton, MA; SID 94 Digest, p. 137, 3 pages.
"A 6.times.6-in 20-lpi Electroluminescent Display Panel" by T.P. Brody, F.C. Luo, Z.P. Szepesi, and D.H. Davies, Westinghouse Research Laboratories, Pittsburgh, PA, IEEE Transactions on Electron Devices, vol. Ed-22, No. 9, Sep. 1975, pp. 739-748.
16.4 TFEL Character Module Using a Multilayer Ceramic Substrate, K. Nunomura, Y. Sano, and K. Utsumi, NEC Corporation, Kanagawa, Japan; S. Sakuma, NEC Kansai, Ltd., Shiga, Japan, SID 87 Digest, pp. 299-302.
ACTA Polytechnica Scandinavica, Electrical Engineering Series No. 74, "An Electroluminescent Display Simulation System and its Application for Developing Grey Scale Driving Methods" by Markku Aberg, Helsinki 1993.
High-Voltage TFT Fabricated in Recrystallized Polycrystalline Silicon by T. Unagami and L. Dogure, IEEE Transactions on Electron Devices, vol. 35, No. 3, Mar. 1988.
19.2 Late-News Paper: The Fabrication of TFEL Displays Driven by a-Si TFTs by T. Suzuki, Y. Uno, J. Sakurai, Y. Sato, S. Kyozuka, N. Hiji, T. Ozawa, Fuji Xerox Co., Lt., Kanagawa, Japan, SID 92 Digest, pp. 344-347.
"MOS-EL Integrated Display Device" by K. Oki, Y. Ohkawa, K. Takahara and S. Miura, Fujitsu Laboratories, Ltd., Kobe, Japan, pp. 245-246, reprinted from SID Dig. 1982, pp. 266-267.
"Thin-Film Transistor Switching of Thin-Film Electroluminescent Display Elements" by L.K. Kun, F.C. Luo, and J. Murphy, Westinghouse Research and Development Center, Pittsburgh, PA, pp. 236-242, reprinted from Proc. SID, vol. 21, 1980, pp. 85-91.
"37.1: A 31-in.-Diagonal Full-Color Surface-Discharge ac Plasma Display Panel" by S. Kanagu, Y. Kanazawa, T. Shinoda, K. Yoshikawa, T. Nanto, Fukitsu Ltd., Akashi City, Japan, SID 92 Digest, 4 pages.
Evaluation of a 64.times.64 CdSe TFT Addressed ACTFEL Display Demonstrator by J. Vanfleteren, J. Capon, J. De Baets, I. De Rycke, H. De Smet, J. Dourtreloigne, A. Van Calster, P. DeVisschere, Laboratory of Electronics, University of Gent, Belgium; and R. Sallmen, R. Graeffe, Planar International, Espoo, Finland, 1991 IEEE, pp. 134-136.
4.6: High-Performance Column Driver for Gray-Scale TFEL Displays, S.A. Teiner, H.Y. Tsoi, Supertex, Inc., Sunnyvale, CA, SID 88 Digest, pp. 31-34 .

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resonant mode active matrix TFEL display excitation driver with does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resonant mode active matrix TFEL display excitation driver with , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resonant mode active matrix TFEL display excitation driver with will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-393421

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.