Resonant controlled qubit system

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Tunneling through region of reduced conductivity

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S014000, C326S003000

Reexamination Certificate

active

06930320

ABSTRACT:
A method is provided for entangling a quantum state of a qubit with a quantum state of a resonant control system. The method comprises tuning the resonant control system, which is capacitively or inductively coupled to the qubit, to a resonant frequency for a period of time. The resonant frequency corresponds to an energy difference between a first energy level of the qubit and a second energy level of the qubit. The act of tuning entangles the quantum state of the qubit with the quantum state of the resonant control system. A representative resonant control system includes a Josephson junction. A method is also provided for entangling a quantum state of a qubit, within a plurality of qubits, with a quantum state of a resonant control system.

REFERENCES:
patent: 5917322 (1999-06-01), Gershenfeld et al.
patent: 6128764 (2000-10-01), Gottesman
patent: 6317766 (2001-11-01), Grover
patent: 6459097 (2002-10-01), Zagoskin
patent: 6504172 (2003-01-01), Zagoskin et al.
patent: 6563311 (2003-05-01), Zagoskin
patent: 6605822 (2003-08-01), Blais et al.
patent: 6614047 (2003-09-01), Tzalenchuk et al.
patent: 6670630 (2003-12-01), Blais et al.
patent: 2002/0188578 (2002-12-01), Amin et al.
patent: 2003/0193097 (2003-10-01), Il'ichev et al.
patent: 2003/0224944 (2003-12-01), Il'ichev et al.
patent: 2004/0012407 (2004-01-01), Amin et al.
patent: 2004/0016918 (2004-01-01), Amin et al.
Bocko, M., “Prospects for Quantum Coherent Computation Using Superconducting Electronics”, IEEE Transactions on Applied Superconductivity, vol. 7, No. 2, Jun. 1997, pp. 3638-3641.
Ettinger, K. et al., “An Integrated 20 GHz SiGe Bipolar Differential Oscillator with High Tuning Range”, Proceedings of the 2000 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No. 00CH37124) IEEE Piscataway, NJ, USA, Sep. 24, 2000, pp. 161-163, ISBN 0-7803-6384-1.
Makhlin, Y. et al., “Nano-electronic circuits as quantum bits”, ISCAS 2000, IEEE International Symposium on Circuits and Systems, Geneva, vol. 2., May 28, 2000, pp. 241-244.
J. Martinis, S. Nam, J. Aumentado, and C. Urbina, “Rabi Oscillations in a Large Josephson-Junction Qubit”, Physical Review Letters, 89, pp. 117901-117904 (2002).
J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, and S. Lloyd, “Josephson persistent-current qubit,” Science 285, pp. 1036-1039 (1999).
Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box”, Nature, 398, pp. 786-788 (1999).
T.P. Orlando, J.E. Mooij, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, and J.J. Mazo, “Superconducting persistent-current qubit”, Physical Review B, 60, pp. 15398-15413 (1999).
F. Plastina and G. Falci, “Communicating Josephson qubits”, arXiv.org:cond-mat/0206586 (2002).
P. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM Journal of Computing 26, pp. 1484-1499 (1997).
D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, “Manipulating the quantum state of an electrical circuit”, Science, 296, pp. 886-889 (2002).
C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, and J.E. Mooij, “Quantum superposition of macroscopic persistent-current states”, Science, 290, pp. 773-777 (2000).
Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang, “Coherent temporal oscillations of macroscopic quantum states in a Josephson junction”, Science, 296, pp. 889-892 (2002).
W.H. Zurek, “Decoherence and the transition from quantum to classical”, Physics Today, 44, 10, pp. 36-44 (1991).
Ulrich Weiss,Quantum Dissipative Systems, 2ndedition, World Scientific Publishing Co. Pte. Ltd., front page, copyright page, pp. 164-174, 240-251, and 274-380 (1999).
S. L. Braunstein and H.-K. Lo, eds.,Scalable Quantum Computers, Wiley-VCH, front page, copyright page and pp. 1-13 (2001).
DiVincenzo, D.P., 2000, “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, pp. 771-783, also published in Braunstein, S. L., and H.-K. Lo (eds.), 2000,Scalable Quantum Computers, Wiley-VCH, Berlin, ISBN 3-527-40321-3.
Poyatos, J.F., J.I. Cirac, and P. Zoller, 2000, “Schemes of Quantum Computations with Trapped Ions,” Fortschritte der Physik 48, pp. 785-799, also published in Braunstein, S. L., and H.-K. Lo (eds.), 2000,Scalable Quantum Computers, Wiley-VCH, Berlin, ISBN 3-527-40321-3.
Grangier, P., G. Reymond, and N. Schlosser, 2000, “Implementations of Quantum Computing Using Cavity Quantum Electrodynamics,” Fortschritte der Physik 48, pp. 859-874, also published in Braunstein, S. L., and H.-K. Lo (eds.), 2000,Scalable Quantum Computers, Wiley-VCH, Berlin, ISBN 3-527-40321-3.
Cory, D.G., et al., 2000, “NMR Based Quantum Information Processing: Achievements and Prospects,” Fortschritte der Physik 48, pp. 875-907, also published in Braunstein, S. L., and H.-K. Lo (eds.), 2000,Scalable Quantum Computers, Wiley-VCH, Berlin, ISBN 3-527-40321-3.
Burkard, G., H.-A. Engel, and D. Loss, 2000, “Spintronics and Quantum Dots for Quantum Computing and Quantum Communication,” Fortschritte der Physik 48, pp. 965-986, also published in Braunstein, S. L., and H.-K. Lo (eds.), 2000,Scalable Quantum Computers, Wiley-VCH, Berlin, ISBN 3-527-40321-3.
Kane, B.E., 2000, “Silicon-based Quantum Computation,” Fortschritte der Physik 48, pp. 1023-1041, also published in Braunstein, S. L., and H.-K. Lo (eds.), 2000,Scalable Quantum Computers, Wiley-VCH, Berlin, ISBN 3-527-40321-3.
U.S. Appl. No. 10/801,335, Blais et al., filed Mar. 10, 2004.
U.S. Appl. No. 10/801,336, Blais et al., filed Mar. 15, 2004.
U.S. Appl. No. 10/801,340, Blais et al., filed Mar. 15, 2004.
U.S. Appl. No. 60/341,974, Il'ichev et al., filed Dec. 18, 2001.
U.S. Appl. No. 60/349,663, Amin et al., filed Jan. 15, 2002.
U.S. Appl. No. 60/372,958, Il'ichev et al., filed Apr. 15, 2002.
U.S. Appl. No. 60/556,778, Hilton et al., filed Mar. 26, 2004.
U.S. Appl. No. 60/557,747, Amin et al., filed Mar. 29, 2004.
U.S. Appl. No. 60/557,750, Grajcar et al., filed Mar. 29, 2004.
W.A. Al-Saidi and D. Stroud, “Eigenstates of a small Josephson junction coupled to a resonant cavity”, Physical Review B, 65, pp. 014512-1 to 014512-7 (2001).
A.D. Armour, M.P. Blencowe, and K.C. Schwab, “Entanglement and Decoherence of a Micromechanical Resonator via Coupling to a Cooper-Pair Box”, Physical Review Letters, 88, pp. 148304-1 to 148301-4 (2002).
A. Barenco, C.H. Bennet, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation”, Physical Review A 52, pp. 3457-3567 (1995).
A. Blais, “Quantum network optimization”, Physical Review A, 64, pp. 022312-1 to 022312-5 (2001).
G. Blatter, V.B. Geshkenbein, and L. Ioffe, “Design aspects of superconducting-phase quantum bits,” Physical Review B, 63, pp. 174511-1 to 174511-9 (2001).
D. Born, T. Wagner, W. Krech, U. Hubner, and L. Fritzsch, “Fabrication of ultrasmall tunnel junctions by electron beam direct-writing”, IEEE Transactions on Applied Superconductivity, 11, pp. 373-376 (2001).
O. Buisson and F.W.J. Hekking, “Entangled states in a Josephson charge qubit coupled to a superconducting resonator”, arXiv.org:cond-mat/0008275 (2000).
A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve, and M.H. Devoret, “Implementation of a combined charge-phase quantum bit in a superconducting circuit”, Physica C, 367, pp. 197-203 (2002).
D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer”, Proceedings of the Royal Society of London A, 400, pp. 97-115 (1985).
D.P. DiVincenzo, “The physical implementation of quantum computation”, arXiv.org:quant-ph/0002077 (20

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resonant controlled qubit system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resonant controlled qubit system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resonant controlled qubit system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3520473

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.