Resistance welding machine control method

Electric heating – Metal heating – For bonding with pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S086410

Reexamination Certificate

active

06294753

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of controlling a resistance welding machine used for spot welding, for example.
2. Prior Art
Resistance welding, such as spot welding, has been used for a variety of products formed of steel sheets. However, weld defects during resistance welding tend to increase these days. In other words, conventionally, workpieces were generally formed of mild steel sheets. Therefore, improper welding occurred less frequently. By controlling welding conditions constant, it was possible to maintain the quality of welding relatively stably. However, galvanized steel sheets and high-tensile steel sheets have begun to be used abundantly instead of mild steel sheets, and weld defects have occurred more frequently.
Accordingly, the advent of a method capable of accurately controlling the quality of welding has been waited for.
To cope with this problem, a variety of welding control methods have been developed. For example, one of the methods developed up to this time is a method wherein the resistance across the electrode tips is obtained from welding current and welding voltage, and the welding current is controlled on the basis of the change pattern of the resistance. An example of this type is disclosed in Japanese Laid-open Patent Application No. Sho 57-127584. Furthermore, another method has been developed wherein the voltage across the electrode tips is with a preset reference voltage changing with time, and welding control is carried out depending on whether the difference therebetween is within an allowable value or not. An example of this type is disclosed in Japanese Patent Publication No. Sho 59-40551. Moreover, in accordance with the progress of the recent computer and simulation technologies, other methods have been developed and used practically wherein a thermal conduction model is used, and nugget diameters are calculated by using a computer. In these methods, the temperature distribution of a base metal is calculated from a thermal conduction model, nugget formation conditions are estimated from the temperature distribution, and welding control is carried out depending on the conditions. An example of this type is disclosed in Japanese Laid-open Patent Application No. Hei 9-216072. In addition, still another method has been developed wherein the temperature distribution of the base metal is calculated from a thermal conduction model, the nugget diameter is estimated from the temperature distribution, and the temperature distribution is corrected by using the movement amount of the electrodes during welding. An example of this type is disclosed in Japanese Laid-open Patent Application No. Hei 7-16791.
Among these technologies, in the cases of the conventional various welding control methods not using any thermal conduction models, it is necessary to carry out preliminary experiments for each welding material at a welding site to obtain the relationship between the quality of welding and its criterion. The result of the control is unsatisfactory. This disadvantage in the conventional welding control methods is caused by the fact that the control algorithm thereof is created on the basis of only the basic images and experimental equations.
Furthermore, the recent welding control methods using a thermal conduction model have a possibility of solving the above-mentioned problems since general-purpose control methods are incorporated. However, the actual welding conditions at a welding site depend on the mixture of various sheet combinations (the combinations of sheets being different in thickness, material and surface treatment), the presence or absence of welded points, the presence or absence of end point welding (welding to a sheet end portion), and the difference in shape between the electrode tips, and the like. Therefore, in some cases, it has been difficult to raise the accuracy of control and to obtain high welding quality by using only the thermal conduction model.
For example, when a sheet combination is formed of thin and thick sheets, and when three or more sheets are overlaid and welded, even if it is estimated that melted portions are sufficiently obtained by using the thermal conduction model depending on the contact interface positions of thin and thick sheets, it is difficult to judge whether the portion of the thin sheet making contact with the welding electrode functioning as a cooling end has melted or not.
Accordingly, the present invention is intended to provide a resistance welding machine control method capable of improving control accuracy and welding quality.
SUMMARY OF THE INVENTION
A resistance welding machine control method in accordance with the present invention is a method for calculating a temperature distribution at a portion to be welded by using changes in welding current and voltage across two welding electrodes during welding and information on sheet combination sequence at a spot-welding position, and for controlling at least the welding current or pressure applied to the electrodes by using the calculated temperature distribution.
In accordance with the resistance welding machine control method of the present invention, the temperature distribution at the portion to be welded is calculated by using changes in welding current and voltage across the two welding electrodes during welding and the information on sheet combination sequence at the spot-welding position. For this reason, it is possible to calculate the temperature distribution accurately. Since this temperature distribution is used to control the welding current and/or the pressure applied to the electrodes, this method is effective in accomplishing highly accurate nugget dimension characteristic values at the portion to be welded, thereby accomplishing the control of welding quality.
Furthermore, a resistance welding machine control method in accordance with the present invention is a method for calculating a temperature distribution at a portion to be welded by using changes in welding current and voltage across two welding electrodes during welding and welding position information at a spot-welding position, and for controlling at least the welding current or pressure applied to the electrodes by using the calculated temperature distribution.
In accordance with the resistance welding machine control method of the present invention, the temperature distribution at the portion to be welded is calculated by using changes in welding current and voltage across the two welding electrodes during welding and the welding position information at the spot-welding position, and the welding current and/or the pressure applied to the electrodes are controlled by using the calculated temperature distribution. For this reason, welding quality is less affected by the spot welding position. As a result, this method is effective in accomplishing highly accurate nugget dimension characteristic values at the portion to be welded, thereby accomplishing the control of welding quality.
Furthermore, a resistance welding machine control method in accordance with the present invention is a method for calculating a temperature distribution at a portion to be welded by using changes in welding current and voltage across two welding electrodes during welding, and information on the comparison of wear between the two welding electrodes, and for controlling at least the welding current or pressure applied to the electrodes by using the calculated temperature distribution.
In accordance with the resistance welding machine control method of the present invention, the temperature distribution at the portion to be welded is calculated by using changes in welding current and voltage across the two welding electrodes during welding and the information on the comparison of wear between the two welding electrodes, and the welding current and/or the pressure applied to the electrodes are controlled by using the calculated temperature distribution. For this reason, welding quality is less affected when the condition of wear diffe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resistance welding machine control method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resistance welding machine control method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resistance welding machine control method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2498865

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.