Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...
Reexamination Certificate
2000-11-10
2002-07-09
Therkorn, Ernest G. (Department: 1723)
Liquid purification or separation
Processes
Liquid/liquid solvent or colloidal extraction or diffusing...
C210S650000, C210S651000, C210S681000
Reexamination Certificate
active
06416669
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to the use of ion-complexing resin beds in water purification systems, and more particularly, to a resin trap device for removing resin particles in ultrafiltration systems.
BACKGROUND OF THE INVENTION
The production of ultrapure water is essential to the fabrication of defect-free silicon chips in the microelectronics industry. Typically, producing ultrapure water involves treating water through a number of processes to remove ion contaminants. In particular, the ultrapure water (also known as deionized or high filtered water) must be virtually free of ionic contaminants, typically bringing the specific resistivity to greater than or equal to about 18.2 M·ohm·cm at 20° C.
In these water purification systems, water is initially treated by a series of steps which control the pH level of the intake water, add chlorine to control bacteria growth in the water, remove particulate matter, remove added chlorine so that it does not damage delicate downstream equipment, and warm the water to about 21° C. (70° F.). After these initial treatment steps, the water is typically deionized in a reverse osmosis process and then degassed. The water is then further deionized by a first set of resin beds. The resin beds include beads of an ion-complexing resin which are retained in the resin beds by a screen on the exit header pipes and laterals inside the bed. The water passes through the resin beds so that it intimately contacts the resin beads to remove ion contaminants from the water. The water then passes through a plurality of 1.0 &mgr;m particle pass size microfiltration modules or microfilters to remove resin particles which may have escaped the resin beds and entered the water purification system. These microfilters contain membranes of spun polypropylene or nylon which are housed in a stainless steel housing and arranged so that water enters the outer lumens of each microfilter and permeates to a common inner plenum within the housing. The water passes through the microfilters to an ultraviolet sterilization unit to control bacterial contamination and is typically stored as deionized water.
The deionized water from storage is then treated by a second set of water purification steps. These water purification steps include ultraviolet sterilization to control bacterial contamination and to convert organic materials to low molecular weight charged ions, and polishing reverse osmosis for the removal of charged ions and particulate matter. The water then passes through a final polishing system which includes another ultraviolet sterilizer and a second set of ion-complexing resin beds to remove ion contaminants from the water. Another set of microfilters is positioned downstream from the second set of resin beds to remove resin particles which may escape from the resin beds. These microfilters also have a small particle pass size (e.g. 1 &mgr;m absolute and 0.1 &mgr;m or 0.2 &mgr;m nominal rated) and include a polyvinylidene fluoride (PVDF) lined stainless steel housing to avoid parts per trillion metals contamination. Immediately after passing through these microfilters, the water advances to a set of cross-flow ultrafilters that remove additional ion contaminants and very small particles to produce ultrapure water.
One problem that occurs in these water purification processes is that resin particles escape the ion-complexing beds and become entrained in the water flow. This “fouling” of the water occurs, to some degree, during normal system operation of the purification system. However, events such as the breakage of exit flow strainers in the resin beds can cause a sudden large release of resin particles into the flow of water. This sudden release of resin particles can blind downstream microfilters and ultrafilters and clog system apertures and instrumentation thereby reducing or stopping the flow of water in the ultrafiltration process.
As mentioned above, the conventional method of removing resin particles from the water purification system prior to ultrafiltration is to use a plurality of microfilters having a maximum particle pass size of between 0.1 and 1 &mgr;m. Unfortunately, because of the small particle pass size of these microfilters, the high pressure drop through these microfilters significantly decreases the flow rate of the water through the water purification system. Therefore, ultrapure water often cannot be produced at the flow rates desired for manufacturing processes.
An additional problem associated with these microfilters is that it can be difficult to remove the resin particles trapped in the microfilters. In particular, these mirofilters cannot be flushed and thus resin particles accumulate in the microfilters. As a result, this accumulation makes it necessary to replace the microfilters in the water purification system on an annual or biannual basis. In particular, if these microfilters are not replaced, the water can become more readily contaminated and resin particles are more likely to be released into the water purification system. The replacement of microfilters causes great expense to the operation of the water purification system not only because the microfilters are expensive but because their replacement also requires that the entire purification system be shut down and opened to the atmosphere.
There is therefore a need in the art of ultrapure water systems for an apparatus and method to remove potentially damaging resin particles from the flow of water that does not cause an undesirable pressure drop, is not subject to contamination and is suitable for continuous operation and cleansing by flushing with water.
SUMMARY OF THE INVENTION
The present invention is a resin trap device and method of using same to remove large resin particles from the water in a water purification system. In particular, the resin trap device removes large resin particles to protect downstream ultrafiltration equipment from damage even when large releases of resin particles enter the purification system such as by breakage of the resin bed exit flow strainer in the system. The resin trap device of the invention does not cause an undesirable pressure drop in the water flow thereby allowing ultrapure water to be produced at good flow rates. In addition, the resin trap device can be cleansed by flushing with water or disassembly to remove resin particles and thus limit contamination of the water and the need to replace filtration apparatus on an annual or biannual basis.
In accordance with the present invention, it has been discovered that it is not necessary to remove resin particles down to micron size prior to the ultrafiltration of water. In particular, it has been discovered that a light flow of small particles having an average diameter of less than about 150 &mgr;m (6 mils) generally does not harm the ultrafiltration equipment and these small particles can be harmlessly diverted into a reject water stream and tapped out of the ultrafiltration system. Large resin particles having an average diameter of greater than about 150 &mgr;m, on the other hand, can harm the cross-flow ultrafiltration membranes found in the final cross-flow ultrafilters and can also harm other delicate equipment located downstream from the resin beds. Therefore, it has been determined that damage to the ultrafilters can be avoided by removing the large resin particles from the water purification system.
The present invention comprises a resin trap device for removing large resin particles from a water purification system. The resin trap device comprises a housing and one or more resin strainers disposed within the housing. Each resin strainer includes a plurality of openings having a particle pass size of between about 100 &mgr;m (4 mils) and about 250 &mgr;m (10 mils) thereby allowing water and particles having a particle size of less than the particle pass size to flow through the openings but not allowing particles having a particle size of greater than the particle pass size to flow through the openings. Preferably, the particle pass size is between about
Boyce Allen
Marchando Michael Steven
Webster James Kenneth
Alston & Bird LLP
SEH America Inc.
Therkorn Ernest G.
LandOfFree
Resin trap device for use in ultrapure water systems and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Resin trap device for use in ultrapure water systems and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resin trap device for use in ultrapure water systems and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2870733