Resin for high-refractivity lenses and lenses made of same resin

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

523106, 525937, 351160H, 351160R, 351168, C08F21232

Patent

active

045229937

DESCRIPTION:

BRIEF SUMMARY
DESCRIPTION

1. Technical Field
This invention relates to a lens-making resin having a high refractive index and a lens made of the above resin.
2. Background Art
Plastic lenses have found increasing commercial utility as eyeglass lenses, camera lenses and other optical lenses in recent years, since they are lighter in weight, less fragile and more readily colored in comparison with inorganic glass lenses. As a resin which is currently used in a large volume for the above application, there is a resin obtained by the casting-polymerization of diethylene glycol bisallylcarbonate (hereinafter called "CR-39"). However, the refractive index (n.sub.d) of the above resin is 1.50, which is smaller compared with those of inorganic glass lenses (n.sub.d =about 1.52). In order to achieve the same optical characteristics as glass lenses, it is necessary to increase the central thickness, peripheral thickness and curvature of each plastic lens, thereby unavoidably making the plastic lens thicker as a whole. For this reason, there is an outstanding desire for the development of a lens-making resin having a still higher refractive index. As resins having high refractive indexes, there have already been known polycarbonate (n.sub.d =1.58-1.59), polystyrene (n.sub.d =1.58-1.60), etc. These resins are each a two-dimensional polymer structurally and thermoplastic. They are thus unsuitable for casting-polymerization method which is suitable for production of articles in various models such as fabrication of eyeglass lenses, and their post-molding processings, especially, their rough-grinding and smoothing (hereinafter merely referred to as "grinding") work is difficult. Therefore, use of these resins are presently limited to some sort of safety eyeglasses and the like.
Accordingly, there is a strong desire for the development of a lens-making resin which has a refractive index higher than that of the lens-making resin prepared by polymerizing CR-39, can be cast-polymerized similar to CR-39 and does not make diamond-made grindstones loaded owing to its three-dimensional crosslinking structure when grinding molded lens blanks. A variety of researches has already been carried out with a view toward developing a resin which would meet the above-mentioned desire, resulting in proposals of resins obtained by copolymerizing CR-39 and second monomers having refractive indexes higher than that of CR-39 when measured as their respective homopolymers (see, Japanese Patent Laid-open Nos. 79353/1976, 7787/1978, 77686/1979, 15118/1980 and 36601/1981). The refractive indexes of the thus-copolymerized resins are however inherently limited because they employ CR-39 as their principal components. It was thus difficult to obtain a resin having a high refractive index, for example, a refractive index of 1.55 or higher.
In order to obtain a resin having a still higher refractive index, it is urged to use a bifunctional monomer which can afford a homopolymer having a refractive index higher than that of CR-39. However, each of bifunctional monomers which have been proposed to date resulted in a polymer having impact resistance much poorer compared with the homopolymer of CR-39 when polymerized singly. Thus, some attempts have been made to improve the impact resistance of these bifunctional monomers by copolymerizing them with a unifunctional monomer. Here, each matching unifunctional monomer is required to have a high refractive index when measured as its homopolymer if one wants to obtain a copolymer having a high refractive index. For this reason, styrene or a halogen-substituted styrene is presently used as such a unifunctional monomer. However, use of bifunctional monomers different from CR-39, which have heretofore been proposed, in combination with the above-mentioned unifunctional monomers is accompanied by such drawbacks that it tends to result in development of polymerization strain and is difficult to obtain polymers having uniform refractivity distribution because there are considerable differences in polymerization reactivity between

REFERENCES:
patent: 4393184 (1983-07-01), Tarumi et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resin for high-refractivity lenses and lenses made of same resin does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resin for high-refractivity lenses and lenses made of same resin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resin for high-refractivity lenses and lenses made of same resin will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1183957

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.