Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
2000-08-07
2002-08-13
Boykin, Terressa M. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C528S271000, C528S272000
Reexamination Certificate
active
06433081
ABSTRACT:
TECHNICAL FIELD
The present invention relates to resin compositions and resin sheets.
BACKGROUND ART
Conventionally, laminated decorative sheets have been widely used for adhering to metal or wooden materials used for furniture, cabinets, fixtures, desks, cupboards, and the like.
Laminated decorative sheets have also been singly or as laminated decorative sheets formed by laminating a plurality of sheets, e.g., an upper sheet, an under sheet, and in addition, an intermediate sheet.
In addition, laminated decorative sheets are also precisely adhered by membrane pressing onto adherends having complicated curved surfaces.
As a conventional laminated decorative sheet, there is a sheet disclosed in, for example, Japanese Patent Laid-Open No. 7-24979. The sheet mentioned above is a laminated decorative sheet composed of an opaque polyolefin resin film as a substrate layer and an amorphous polyethylene terephthalate resin film.
In this connection, the amorphous polyethylene terephthalate resin film used for the sheet disclosed in Japanese Patent Laid-open No. 7-24979 is called “amorphous”. However, there is some partial crystallinity in the resin film.
Further, a rigid shrinkable film is disclosed in Japanese Patent Laid-Open No. 62-124928. This film includes an amorphous polyester resin component and a polymer component composed of a vinyl aromatic hydrocarbon, in which the polymer component comprises at least one polymeric block segment primarily composed of the vinyl aromatic hydrocarbons mentioned above and at least one polymeric block segment primarily composed of conjugated diene derivatives.
According to the conventional technique described above, a laminated decorative sheet and a rigid shrinkable film having superior moldability, impact resistance, and the like can be obtained.
In addition, in Japanese Patent Laid-Open No. 2-129266, an agent for improving impact resistance of polyalkylene terephthalate resins is disclosed. This is a resin composition composed of a polyalkylene terephthalate resin, such as polybutylene terephthalate and polyethylene terephthalate, and a core-shell polymer composed of a rubber elastomer as a core and a glassy polymer as a shell.
According to the conventional technique mentioned above, a resin composition having superior impact resistance can be obtained.
However, conventional resin compositions and laminated decorative sheets have problems in that whitening occurs during embossing, heat-sealing, and bending in fabrication, and the degree of transparency is poor. Furthermore, there is a problem in that plate-out occurs during roller molding (calendering and embossing) or injection molding.
Conventionally, in addition to resin sheets having transparency, resin sheets having colored or printed under sheets are also widely used. In this case, in order to provide deeper design effects to the resin sheets, transparent sheets are generally used as upper sheets. However, the design effects have not reached a satisfactory level. In addition, resin sheets having colored or printed sheets used as a single sheet or used as an upper sheet have problems with regard to workability since whitening is likely to occur during bending.
An object of the present invention is to provide a resin composition and a resin sheet specifically suitable for membrane pressing, vacuum pressing, air pressing, and the like, in which the resin composition and the resin sheet have superior properties, such as workability, moldability, impact resistance, transparency, and the like, and in which plate-out is not significantly observed, and whitening during embossing and heat-sealing is unlikely to occur.
Membrane pressing is pressing comprising the steps of heating a thermoplastic decorative sheet having a desired colored or surface-printing, and a desired thickness to a temperature close to the softening point thereof, covering the decorative sheet on an adherend having complicated curved surfaces such as doors used in integrated kitchen systems, covering an elastic membrane (in the form of a film), for example, a rubber film, on the decorative sheet, and adhering the decorative sheet onto the adherend precisely along the contour thereof by applying air or hydraulic pressure to the elastic membrane.
The basic principles of vacuum pressing and air pressing are equivalent to that of membrane pressing. The former is pressing using vacuum pressure instead of a pressing rubber membrane, and the latter is pressing using air pressure.
SUMMARY OF INVENTION
Through intensive research by the inventors of the present invention, the conventional problems described above can be solved.
That is, the present invention provides a resin composition comprising 50 to 99 percent by weight of a completely amorphous polyester resin (A) and 1 to 50 percent by weight of a graft copolymer (B) obtained by graft-polymerizing a methacrylic acid ester and a vinyl aromatic compound with conjugated diene rubber particles.
The present invention provides a resin composition comprising 50 to 99 percent by weight of the completely amorphous polyester resin (A) and 1 to 50 percent by weight of a graft copolymer (C) obtained by graft-polymerizing a methacrylic acid ester and a vinyl aromatic compound with acrylic rubber particles.
The present invention also provides a resin composition comprising 50 to 98 percent by weight of the completely amorphous polyester resin (A), 1 to 49 percent by weight of the (B) graft copolymer obtained by graft-polymerizing a methacrylic acid ester with conjugated diene rubber particles, and 1 to 49 percent by weight of the graft copolymer (C) obtained by graft-polymerizing a methacrylic acid ester and a vinyl aromatic compound with acrylic rubber particles, wherein the total of the (A), (B), and (C) is 100 percent by weight.
In addition, the present invention provides a resin sheet obtained by molding a resin composition comprising 50 to 99.9 percent by weight of the completely amorphous polyester resin (A) and 0.1 to 50 percent by weight of a thermoplastic polyester elastomer (D).
The present invention also provides a resin sheet that is colored and/or is printed on a surface thereof.
The present invention further provides a laminated resin sheet obtained by laminating at least two layers of the resin sheet described above.
The present invention also provides a laminated resin sheet obtained by laminating two layers, in which the resin sheet described above is used as an upper layer and a thermoplastic resin (F) sheet is used as an under layer.
Additionally, the present invention provides a laminated resin sheet obtained by laminating two layers, in which the resin sheet described above is used as an upper layer and a resin sheet, which comprises 50 to 99 percent by weight of the completely amorphous polyester resin (A), 1 to 50 percent by weight of the (B) graft copolymer obtained by graft-polymerizing a methacrylic acid ester and a vinyl aromatic compound with conjugated diene rubber particles and/or the graft copolymer (C) obtained by graft-polymerizing a methacrylic acid ester and a vinyl aromatic compound with acrylic rubber particles, is used a colored and/or printed surface under layer.
The present invention also provides a resin composition comprising 50 to 99 percent by weight of the components (A)+(E) composed of 0.1 to 95 percent by weight of the completely amorphous polyester resin (A) and 5 to 99.9 percent by weight of the polyester resin (E) in which the degree of crystallinity thereof is nearly zero to 50%, and 1 to 50% of at least one selected from the group consisting of the (B) graft copolymer obtained by graft-polymerizing a methacrylic acid ester and a vinyl aromatic compound with conjugated diene rubber particles, the graft copolymer (C) obtained by graft-polymerizing a methacrylic acid ester and a vinyl aromatic compound with acrylic rubber particles, and the thermoplastic elastomer (D).
The present invention further provides a resin sheet obtained by molding a resin composition described above.
DISCLOSURE OF INVENTION
Component (A) (completely amorphous pol
Fukunaga Etsushi
Nozawa Takafumi
Shimizu Motohiro
Tokunaga Yasushi
Yamada Yasunori
Boykin Terressa M.
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Riken Technos Corporation
LandOfFree
Resin composition and resin sheet does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Resin composition and resin sheet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resin composition and resin sheet will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2921966