Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Particulate matter
Reexamination Certificate
1999-07-27
2002-04-30
Thibodeau, Paul (Department: 1773)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Particulate matter
C428S357000
Reexamination Certificate
active
06379797
ABSTRACT:
FIELD OF THE INVENTION
Thermoplastic resins such as a polycarbonate resin (PC), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), a blend thereof and a mixture obtained by blending one or a plurality of the above resins with other resins bring about thermal decomposition (reduction in molecular weight) when they are heated and molten in various molding processes and lower in mechanical properties. The present invention relates to a resin additive which prevents thermal decomposition thereof and to a resin additive which prevents thermal decomposition and does not reduce the impact strength to a large extent.
DESCRIPTION OF THE RELATED ART
Resin materials, particularly respective resins of PC, PBT and PET are heavily reduced in a molecular weight in melting by heating, so that the molecular weights have notably been reduced by heat given in various molding processes and shear stress exerted in kneading. Accordingly, it was difficult to recycle spools and runners produced in molding as well as recycling of the products.
According to researches made by the present inventors, the resins described above could be inhibited from lowering in a molecular weight in heating and melting by adding inorganic particles subjected to surface treatment with catechin to the resins, but there was the problem that the IZOT impact strengths were reduced.
Intensive researches of a resin additive of catechin continued by the present inventors have resulted in finding that thermo-plastic resins can be inhibited from lowering in a molecular weight in heating and melting by adding a resin additive obtained by subjecting inorganic particles to surface treatment with catechin to the above resins.
Further, the present inventors have found that thermo-plastic resins can be inhibited from lowering in a molecular weight in heating and melting and can be decreased in a reduction in an IZOT impact strength by adding to the above resins, a resin additive obtained by subjecting inorganic particles to surface treatment with catechin and further subjecting them to surface treatment with a coupling agent.
In addition thereto, the present inventors have found that thermoplastic resins can be inhibited from lowering in a molecular weight in heating and melting and can be prevented from lowering in an IZOT impact strength by adding to the above resins, a resin additive obtained by subjecting inorganic particles to surface treatment with catechin and further subjecting them to surface treatment with a phenone compound or saccharides, followed by further subjecting them to surface treatment with a coupling agent.
SUMMARY OF THE INVENTION
Accordingly, the first object of the present invention is to provide a resin additive which is obtained by subjecting inorganic particles to surface treatment with catechin and which can inhibit a resin from lowering in a molecular weight in heating and melting to prevent the resin from being deteriorated.
The second object of the present invention is to provide a resin additive which is obtained by allowing the surface of inorganic particles to be contacted with a catechin solution to treat them and further treating them with a coupling agent to thereby subject them to multilayer surface treatment and which not only can prevent a resin from lowering in a molecular weight in heating and melting but also can prevent the resin from lowering in an IZOT impact strength.
The third object of the present invention is to provide a resin additive which is obtained by allowing the surface of inorganic particles to be contacted with a catechin solution to treat them and further subjecting them to surface treatment with a phenone compound or saccharides, followed by further subjecting them to surface treatment with a coupling agent to thereby subject them to multilayer surface treatment and which attempts to thermally stabilize the resin by catechin and reduce the impact stress by the phenone compound or saccharides and strengthens the bond of the inorganic particles with the matrix resin to not only prevent the resin from being deteriorated in heating and melting but also prevent the resin from lowering in an IZOT impact strength.
The fourth object of the present invention is to provide a resin additive which not only provides a thermoplastic resin with heat stability in heating and melting the resin but also prevents the resin from lowering in an IZOT impact strength.
Further object of the present invention is to provide a resin additive which not only provides a thermoplastic polycarbonate resin, a thermoplastic polyester resin or a thermoplastic resin comprising these polycarbonate resin and polyester resin with heat stability in heating and melting the resin but also prevents the resin from lowering in an IZOT impact strength.
Another object of the present invention is to provide a resin additive which makes it possible to recycle the product.
Still another object of the present invention shall become more distinct from the following explanations.
DISCLOSURE OF THE INVENTION
It has been found that the preceding objects of the present invention can be achieved by:
1. a resin additive prepared by subjecting inorganic particles to surface treatment with catechin,
2. a resin additive prepared by subjecting inorganic particles to surface treatment with catechin and further subjecting them to surface treatment with a coupling agent,
3. a resin additive prepared by subjecting inorganic particles to surface treatment with catechin and then subjecting them to surface treatment with a phenone compound, followed by further subjecting them to surface treatment with a coupling agent, and
4. a resin additive prepared by subjecting inorganic particles to surface treatment with catechin and then subjecting them to surface treatment with saccharides, followed by further subjecting them to surface treatment with a coupling agent.
DETAILED DESCRIPTION OF THE INVENTION
The resin additive of the present invention shall be explained below in further details.
The inorganic particles used in the present invention shall not specifically be restricted and may be any inorganic particles as long as they can effectively be used for the objects of the present invention. Specific examples thereof include silica salts such as silica, anhydrous silica, silica gel, talc, clay, mica aluminum silicate and kaolinite, alumina and salts thereof such as aluminates. In addition thereto, inorganic substances staying in a glass state, that is, glass can also be used as an inorganic material in the present invention. Various materials such as oxide glass, particularly silicate glass, powder of glass fiber, glass beads, glass balloon and fly ash can be used. Further, carbon and powder of carbon fiber can also be used as an inorganic particle. Among them, silica powder is produced in nature and therefore is excellent in profitability, so that it is preferably used. The particle size and form of the inorganic particles used shall not specifically be restricted and are suitably selected and used according to the kind and the use purposes thereof.
Next, catechin used in the present invention is a polyhydric phenol compound which is a polyoxy derivative of 3-oxyflavane and contained widely in plants in the natural world. It is said that catechin includes heterogeneous types having various molecular structures, and all ones are natural compounds, so that a lot of catechins having different structures are present. Catechin used in the present invention shall not specifically be restricted and may be any one as long as it is catechin which can effectively be used for the objects of the present invention. Catechin is called astringent juice. At present, catechin is used medically as a carcinostatic substance and industrially as a color fixing agent and a mordant for nylon. Catechin is very soluble in water and lower alcohols and therefore can be used in the form of a solution having a high concentration.
Four kinds of typical catechins are shown by the following formulas (a) to (d), respectively. Further, catechins are compounds
Kanno Maki
Nikkeshi Susumu
Ahmed Sheeba
Thibodeau Paul
Tohoku Munekata Co Ltd
LandOfFree
Resin additive does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Resin additive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resin additive will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2902015