Resectoscope

Surgery – Instruments – Electrical application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S105000, C600S130000, C600S156000

Reexamination Certificate

active

06824544

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Priority Claim
Priority is claimed for this invention and application, a corresponding application having been filed in Germany on Mar. 25, 2002, No. 102 13 200.3.
2. Field of the Invention
The invention relates to a resectoscope.
3. Description of the Related Art
With known resectoscopes, after a certain number of individual cuts with which tissue parts have been detached, it is usual to lead away the detached parts together through the outer shank of the resectoscope. For this it is first necessary to remove the so-called working insert from the outer shank of the resectoscope in order to be able to make available a sufficiently large cross section for leading away or suctioning away the tissue parts. This manner of proceeding is relatively time-consuming and is thus a burden to the patient.
From WO 98/43531 there is known a resectoscope whose cross section is divided into two parts by a separating wall, a larger part, which forms the suction channel, and a smaller part in which the optics shank is arranged and which serves as a supply channel. In the inside of the suction channel there is arranged the guide and actuation rod for a cutter loop. This leads to a narrowing of the suction channel; furthermore there exists the danger that tissue parts to be suctioned catch on the actuation elements for the cutter loop.
SUMMARY OF THE INVENTION
It is the object of the invention to create a resectoscope which permits an improved and quicker leading away of the detached tissue parts.
The resectoscope according to the invention comprises an outer shank in whose inside there is formed a supply channel and suction channel which extend parallel to the outer shank. A rinsing fluid is led through the supply channel into the body cavity to be operated on in order to produce an excess pressure in this. The rinsing fluid may be continuously supplied through the supply channel and led away through the suction channel so that one maintains a constant flow of fluid. At the same time the same quantity of fluid is led away through the suction channel as is supplied through the supply channel in order to maintain the excess pressure in the body cavity. According to the invention the suction channel has a larger cross section than the supply channel. This design permits detached tissue parts, so-called chips to be led away through the suction channel without previously having to remove the working insert from the outer shank. The arrangement thus permits chips to be continuously led away during an operation without the operation having to be interrupted for removal of the working insert from the resectoscope. In this manner an operation may be carried out in a manner which is less time-consuming and which is less of a burden to the patient. Since a continuous change of instruments is avoided, the required fluid balancing for avoiding the feared fluid-overload may be carried out more simply, securely and accurately. The suction channel in a first half of the cross section of the outer shank extends parallel to this. At the same time the suction channel preferably has a cross-sectional shape which corresponds essentially to half the cross section of the outer shank. In this manner one may create a very large suction channel which permits the suctioning away of larger chips. In a second half of the cross section of the outer shank, in its inside there extends an optics channel as well as at least one electrode guide tube outside the suction channel and parallel to the outer shank. This arrangement permits half of the inner cross section of the outer shank to be used for the suction channel, whilst the other half is used for the remaining channels, i.e. the optics channel as well as the at least one electrode guide tube. In this manner in the inside of the outer shank there is made available a very large suction channel.
Preferably at the distal end of the resectoscope, i.e. at the end proximal to the patient there is provided a cutter loop which delimits a cross sectional area which in its dimension is smaller or equal to the cross sectional area of the suction channel. The cutter loop serves for detaching tissue parts, as with known resectoscopes. For this the cutter loop is preferably designed as a U-shaped bow which is led through the tissue. The cross sectional area delimited by the cutter loop is determined by the loop size. The size of a detached tissue part or chip is defined by selection of the loop size. Since the loop size is selected such that the cross sectional area delimited by the cutter loop is smaller or equal to the cross sectional area of the suction channel, one may ensure that the detached chips have a size which is smaller than the cross section of the suction channel so that the chips may be safely led away through the suction channel. One may thus prevent the detached chips from sticking in the suction channel and blocking this.
The outer shank preferably has a circular cross section and the suction channel a semicircular cross section. In this manner the suction channel may fill half the inner space or the inner cross section of the outer shank and use it for transport of the chips. However other cross sectional shapes are also conceivable. Thus the outer shank for example may be formed ovally, wherein the suction channel has a cross sectional shape which corresponds essentially to half the inner cross section of the outer shank. The outer contour of the suction channel may be formed corresponding to the shape of the inner cross section of the outer shank, so that the space available in the inside of the outer shank may be optimally exploited.
The supply channel is preferably formed by the cross sectional space surrounding the suction channel, the optics channel as well as the electrode supply tube. This means the supply channel is not formed as a separate shank or as a separate tube as the discharge channel but is formed by the remaining free space in the inside of the outer shank. In this manner the cross section of the outer shank may be optimally exploited and no unused free spaces remain in the inside of the outer shank. Thus a sufficiently large cross section for the supply channel may be made available also with a large cross section of the outer shank according to the invention. The supply channel may have a cleaved cross sectional shape since only a fluid without large particles is to flow through it. The discharge channel on the other hand must have a large, non-fissured, coherent cross sectional area in order to allow the passage of chips.
Preferably there are provided two electrode guide tubes which are arranged on two diametrically opposed sides of the optics channel. The electrode guide tubes preferably have a smaller cross section or diameter than the optics channel. In this manner with a round or oval cross section of the outer shank one may optimally use the free space remaining for the optics channel as well as the electrode guide tubes, i.e. half the cross sectional area of the outer shank. If the suction channel fills half the inner cross section of the outer shank then with a round or oval cross section there remains a semicircular cross section or a cross section in the shape of a half oval. The optics shank with a larger diameter is preferably arranged centrally in order to optimally exploit the section of the greatest height of the cross sectional area. There is sufficient space for the electrode guide tubes in the remaining lateral regions with a smaller cross section. With this arrangement the two electrode guide tubes are furthermore arranged distanced as far as possible to one another. This permits a secure and in particular rotationally secure guiding of the cutter loop and thus a more precise separation of tissue parts. Alternatively the electrode may also be axially guided by way of an individual guide tube encompassing the optics.
With the first embodiment form the limbs of the cutter loop usefully extend parallel to the outer shank through the electrode guide tube. The cutter loop is formed bow-shaped or U-shaped

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resectoscope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resectoscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resectoscope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3325274

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.