Reproducing and recording apparatus, decoding apparatus,...

Dynamic information storage or retrieval – Binary pulse train information signal – Binary signal gain processing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C369S047160, C369S047260, C369S059250, C369S059270

Reexamination Certificate

active

06366545

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a reproducing and recording apparatus, a decoding apparatus, a recording apparatus, a reproducing and recording method, a decoding method and a recording method in which acoustic characteristics of compressed digital data are changed by effecting calculation on normalized information in the compressed digital data.
2. Description of the Related Art
Heretofore, there have been a variety of audio signal high-efficiency coding methods and apparatus, and a few examples of such audio signal high-efficiency coding methods and apparatus will be described below. There is known a method called a transform coding method which is one of block frequency-band division systems in which an audio signal of a time region is blocked at every unit time, a signal of a time axis of every block is transformed into a signal on a frequency axis, i.e. quadrature-transformed and then coded at every band. Also, there is known a method called an SBC (Sub Band Coding) method which is one of non-block frequency band division methods in which an audio signal of time region is not blocked at every time unit but divided into a plurality of frequency bands thereby coded. Further, there is known a high-efficiency coding method which is a combination of the above-mentioned band division coding method and the transform coding method. In that case, after the band is divided by the above-mentioned band division coding system, the signal of every band is quadrature-transformed into a signal of a frequency region by the above-mentioned transform coding system, and the coding is effected at very orthogonal-transformed band.
As a band-division filter used in the above-mentioned band division coding system, there is known a filter such as QMF (Quadrature Mirror filter). This QMF is described in 1976 E. E. Crochiere Digital coding speed in subbands Bell Syst. Tech. J. Vol. 55, No. 8. 1976. Also, ICASSP 83, BOSTON Polyphase Quadrature filters—A new subband coding technique Joseph H. Rothweiler describes equal band width filter dividing method and apparatus such as PQF (Polyphase Quadrature filter).
Also, as the above-mentioned quadrature transform, there is known a quadrature transform in which an input audio signal is blocked at a predetermined unit time (frame) and the time axis is transformed into the frequency axis by effecting FFT (Fast Fourier Transform) or DCT (Discrete Cosine Transform) or MDCT (Modified Discrete Cosine Transform). The above-mentioned MDCT is described in ICASSP 1098 Subband/Transform Coding Using Filter Bank Designs Based on Time Domain Aliasing Cancellation J. P. Princen A. B. Bradley Univ. of Surrey Royal Melbourne Inst. of Tech.
Further, as a frequency dividing width used when each frequency-band-divided frequency component is quantized, there is known a band division considering man's auditory characteristics. That is, in a band width in which the band width is widened in the high band on the frequency axis called a critical band, an audio signal is divided into a plurality of bands, e.g. 25 bands. When data of every band of this time is encoded, the encoding is executed by a predetermined bit distribution of every band or adaptive bit distribution of every band. For example, when MDCT coefficient data of every band obtained by the MDCT processing is encoded by the bit distribution, the encoding is executed by the adaptive distribution bit number.
Further, in the case of the encoding at every band, data is normalized at every band and quantized, thereby effecting a so-called block floating processing in which a more efficient encoding can be realized. For example, when the MDCT coefficient data obtained by the above-mentioned MDCT processing is encoded, data is normalized in response to the maximum value of the absolute value of the above-mentioned MDCT coefficient at every band and quantized, thereby making it possible to execute the more efficient encoding. In the normalization, there are in advance determined a plurality of numbers corresponding to size information, and the numbers are used as normalization information. The size information of the previously-determined normalization is numbered at an interval of a constant magnitude.
As the bit distribution method and apparatus therefor, there have been heretofore known the following two methods.
In the IEEE Transactions of Acoustics, Speech, and Signal Processing, vol. ASSP-25, No. 4, August 1977, bits are distributed on the basis of the magnitude of the signal of every band. Further, in the ICASSP 1980 The critical band coder-digital encoding of the perceptual requirements of the auditory system M.A. Kransner MIT, there is described a method in which a signal-to-noise ratio necessary for every band is obtained by using an auditory masking and bits are distributed in a fixed fashion.
A signal high-efficiency coded by the above-mentioned method is decoded by the method which follows. Initially, the high-efficiency coded signal is calculated as MDCT coefficient data by using bit distribution information of every band, normalization information or the like. The MDCT coefficient data is transformed into data of time region by so-called IMDCT. When data is band-divided by the band-dividing filter upon encoding, data are further synthesized by using a band-synthesizing filter. By the above-mentioned operation, data of the original time region is decoded.
With respect to the signal of the time region which results from decoding the high-efficiency coded signal, let it be considered that the magnitude of the amplitude, i.e. reproduction level is adjusted and that a filter processing which is the level adjustment of every band is executed. When the reproduction level is adjusted, such adjustment is realized by effecting multiplication, addition or subtraction of a constant amount of the signal component of the time region which is not yet encoded fundamentally or the signal component which is decoded to the time region. Further, when the filter processing is executed, such filter processing is realized by a so-called convolutional computation or a combination of delay circuits and multipliers. In both cases, there are required a plurality of multipliers, adders, delay circuits and the like so that the processing process increases.
Also, there is considered a method in which the reproduction level is adjusted by MDCT coefficient data of the MDCT frequency region and the filter is realized by further adjusting the level. With respect to this method, there are required multipliers or adders or multiplication using the subtracter or addition or subtraction of the number corresponding to the number of the MDCT coefficient data so that the processing process increases.
Further, a similar problem arises when the high-efficiency coded signal is recorded on a certain recording medium and the signal of the time region in which the recorded signal is decoded is re-recorded in such a manner that information is changed such that the magnitude of the amplitude, i.e. reproduction level is changed or when information is re-recorded under the condition that information is changed in the form of being processed by the so-called filter effect. In particular, when the reproduction level is adjusted in the time region and the adjusted result is re-recorded on the recording medium, the IMDCT and the MDCT should be executed so that a quality is deteriorated by computation error or the like.
A similar problem arises when a filter processing is realized by the transform to the analog region.
When an analog audio signal is processed by filter processing such as a low-pass filter, a buzz-boost filter, a bandpass filter, a high-pass filter or the like, so-called effect processing, there has heretofore been required a special processing IC.
Also, in order to effect the filter processing on a part of audio signal, after a high-efficiency coded digital audio signal is expanded and a part of the expanded audio signal is processed by a filter processing, a resultant audio signal cannot be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reproducing and recording apparatus, decoding apparatus,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reproducing and recording apparatus, decoding apparatus,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reproducing and recording apparatus, decoding apparatus,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2913325

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.