Repositioning and reorientation of master/slave relationship...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S102000, C606S130000

Reexamination Certificate

active

06459926

ABSTRACT:

BACKGROUND OF THE INVENTION
The present application is generally directed to medical devices, systems, and methods. In a particular embodiment, the invention provides telesurgical robotic systems and methods that flexibly and selectably couple input devices to robotic manipulator arms during surgery.
Advances in minimally invasive surgical technology could dramatically increase the number of surgeries performed in a minimally invasive manner. Minimally invasive medical techniques are aimed at reducing the amount of extraneous tissue that is damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. The average length of a hospital stay for a standard surgery may also be shortened significantly using minimally invasive surgical techniques. Thus, an increased adoption of minimally invasive techniques could save millions of hospital days, and millions of dollars annually in hospital residency costs alone. Patient recovery times, patient discomfort, surgical side effects, and time away from work may also be reduced with minimally invasive surgery.
The most common form of minimally invasive surgery may be endoscopy. Probably the most common form of endoscopy is laparoscopy, which is minimally invasive inspection and surgery inside the abdominal cavity. In standard laparoscopic surgery, a patient's abdomen is insufflated with gas, and cannula sleeves are passed through small (approximately ½ inch or less) incisions to provide entry ports for laparoscopic surgical instruments. The laparoscopic surgical instruments generally include a laparoscope (for viewing the surgical field) and working tools. The working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by an extension tube. As used herein, the term “end effector” means the actual working part of the surgical instrument and can include clamps, graspers, scissors, staplers, image capture lenses, and needle holders, for example. To perform surgical procedures, the surgeon passes these working tools or instruments through the cannula sleeves to an internal surgical site and manipulates them from outside the abdomen. The surgeon monitors the procedure by means of a monitor that displays an image of the surgical site taken from the laparoscope. Similar endoscopic techniques are employed in, e.g., arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy, and the like.
There are many disadvantages relating to current minimally invasive surgical (MIS) technology. For example, existing MIS instruments deny the surgeon the flexibility of tool placement found in open surgery. Most current laparoscopic tools have rigid shafts, so that it can be difficult to approach the worksite through the small incision. Additionally, the length and construction of many endoscopic instruments reduces the surgeon's ability to feel forces exerted by tissues and organs on the end effector of the associated tool. The lack of dexterity and sensitivity of endoscopic tools is a major impediment to the expansion of minimally invasive surgery.
Minimally invasive telesurgical robotic systems are being developed to increase a surgeon's dexterity when working within an internal surgical site, as well as to allow a surgeon to operate on a patient from a remote location. In a telesurgery system, the surgeon is often provided with an image of the surgical site at a computer workstation. While viewing a three-dimensional image of the surgical site on a suitable viewer or display, the surgeon performs the surgical procedures on the patient by manipulating master input or control devices of the workstation. The master controls the motion of a servomechanically operated surgical instrument. During the surgical procedure, the telesurgical system can provide mechanical actuation and control of a variety of surgical instruments or tools having end effectors such as, e.g., tissue graspers, needle drivers, or the like, that perform various functions for the surgeon, e.g., holding or driving a needle, grasping a blood vessel, or dissecting tissue, or the like, in response to manipulation of the master control devices.
While the proposed robotic surgery systems offer significant potential to increase the number of procedures that can be performed in a minimally invasive manner, still further improvements are desirable. In particular, previous proposals for robotic surgery often emphasize direct replacement of the mechanical connection between the handles and end effectors of known minimally invasive surgical tools with a robotic servomechanism. Work in connection with the present invention suggests that integration of robotic capabilities into the operating theater can benefit from significant changes to this one-to-one replacement model. Realization of the full potential of robotically assisted surgery may instead benefit from significant revisions to the interactions and roles of team members, as compared to the roles performed by surgical team members during open and known minimally invasive surgical procedures.
In light of the above, it would be beneficial to provide improved robotic surgical devices, systems, and methods for performing robotic surgery. It would be beneficial if these improved techniques enhanced the overall capabilities of telesurgery by recognizing, accommodating, and facilitating the new roles that may be performed by the team members of a robotic surgical team. It would further be beneficial if these improvements facilitated complex robotic surgeries such as coronary artery bypass grafting, particularly while minimizing the total number of personnel (and hence the expense) involved in these robotic procedures. It would be best if these benefits could be provided while enhancing the overall control over the surgical instruments. and safety of the surgical procedure, while avoiding excessive complexity and redundancy in the robotic system. Some or all of these advantages are provided by the invention described hereinbelow.
SUMMARY OF THE INVENTION
The present invention generally provides devices, systems, and methods which allow one or more of the components of a telesurgical robotic system to be selectively and independently repositioned. Generally, such telesurgical systems include a master controller having an input device which can be operatively associated with an articulated robotic manipulator arm supporting a surgical end effector in a master/slave system so that movement of the input device causes corresponding movement of the end effector. To allow independent movement of the input device or end effector in at least one degree of freedom, the surgeon will often activate an input device altering the mode of operation of the master/slave control system. In some embodiments, the control system will allow independent repositioning in at least one degree of freedom while inhibiting independent repositioning in at least one degree of freedom. For example, this allows an input handle of the master controller to be translationally repositioned relative to an image of the end effector shown on a display at the master controller workstation, while inhibiting rotational repositioning of the handle relative to the end effector. In other embodiments, a manipulator supporting a surgical instrument such as an endoscope or a tool for treating tissue may be manually repositioned independently of the input handle by actuating an input device on the manipulator, greatly facilitating both set-up and adjustment of the robotic surgical system during a surgical procedure.
In a first aspect, the invention provides a robotic surgical system comprising a master controller with an input handle moveable in a plurality of degrees of freedom. A robotic manipulator assembly includes a surgical end effector which is also moveable in a plurality of degrees of freedom. The control system couples the master controller to the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Repositioning and reorientation of master/slave relationship... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Repositioning and reorientation of master/slave relationship..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Repositioning and reorientation of master/slave relationship... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2955433

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.