Replication competent, avirulent Herpes simplex virus as a vecto

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

514 44, 4353201, 4352351, A01N 6300, A01N 4304, C12N 1563

Patent

active

061068268

ABSTRACT:
Degenerative diseases of the retina are a leading cause of vision loss in the United States, affecting approximately two million people each year. The replacement of a defective gene by gene therapy provides one approach for treating individuals having ocular neuronal degeneration where the defective gene has been identified. Several factors, however, suggest that the replacement of a specific gene in a patient might not be effective. For example, many of the conditions are autosomal dominant, and placing a normal copy of the gene into the cells would not correct the defect. As an alternative, replication competent, avirulent, ribonuclease reductase deficient Herpes simplex virus can provide the means to deliver therapeutic polypeptides in a continuous manner to affected cells. Such therapeutic polypeptides include growth factors, neurotrophins and cytokines.

REFERENCES:
patent: 5585096 (1996-12-01), Martuza et al.
patent: 5661033 (1997-08-01), Ho et al.
patent: 5849571 (1998-12-01), Glorioso et al.
Kennedy et al. (Quarterly J. Medicine, (Nov. 1993) 86 (11) 697-702).
Weatherall D. (British Med. Bulletin 1995, vol. 51, No. 1, pp. 1-11).
NIH panel report, Dec. 1995.
M. Ali, et al., "The Use of DNA Viruses As Vectors For Gene Therapy," Gene Therapy, vol. 1 (1994), pp. 367-384.
T. Mineta, et al., "CNS Tumor Therapy by Attenuated Herpes Simplex Viruses," Gene Therapy (Aug. 16-18, 1993), vol. 1, Suppl. 1, p. S78.
E. Boviatsis, et al., "Long-Term Survival of Rats Harboring Brain Neoplasms Treated with Ganciclovir and a Herpes Simplex Virus Vector That Retains an Intact Thymidine Kinase Gene," Cancer Research, vol. 54 (Nov. 15, 1994) pp. 5745-5751.
K. Unoki, et al., "Protection of the Rat Retina From Ischemic Injury by Brain-Derived Neurotrophic Factor, Ciliary Neurotrophic Factor, and Basic Fibroblast Growth Factor," Investigative Ophthalmology & Visual Science, vol. 35, No. 3 (Mar. 1994), pp. 907-915.
M. LaVail, et al., "Basic Fibroblast Growth Factor Protects Photoreceptors from Light-Induced Degeneration in Albino Rats," Annals New York Academy of Sciences, pp. 341-347.
E. Faktorovich, et al., "Photoreceptor Degeneration in Inherited Retinal Dystrophy Delayed by Basic Fibroblast Growth Factor," Nature, vol. 347 (Sep. 6, 1990), pp. 83-86.
S. Andreansky et al., "The Application of Genetically Engineered Herpes Simplex Viruses to the Treatment of Experimental Brain Tumors," Proc. Natl. Acad. Sci. USA, vol. 93 (Oct. 1996), pp. 11313-11318.
C. Kramm, et al., "Herpes Vector-Mediated Delivery of Marker Genes to Disseminated Central Nervous System Tumors," Human Gene Therapy, vol. 7 (Feb. 10, 1996), pp. 291-300.
R. Coffin, et al., "Gene Delivery to the Heart In Vivo and to Cardiac Myocytes and Vascular Smooth Muscle Cells In Vitro Using Herpes Virus Vectors," Gene Therapy, vol. 3 (1996), pp. 560-566.
C. Kramm, "Long-Term Survival in a Rodent Model of Disseminated Brain Tumors by Combined Intrathecal Delivery of Herpes Vectors and Ganciclovir Treatment," Human Gene Therapy, vol. 7 (Oct. 20, 1996), pp. 1989-1994.
J. Sievers, et al., "Fibroblast Growth Factors Promote the Survival of Adult Rat Retinal Ganglion Cells After Transection of The Optic Nerve," Neuroscience Letters, vol. 76 (1987), pp. 157-162.
C. Zhang, et al., "Effects of Basic Fibroblast Growth Factor in Retinal Ischemia," Investigative Ophthalmology & Visual Science, vol. 35, No. 8 (Jul. 1994), pp. 3163-3168.
J. Pepose, et al., "Herpes Simplex Viral Vectors for Therapeutic Gene Delivery to Ocular Tissues," Investigative Ophthalmology & Visual Science, vol. 35, No. 6 (May 1994), pp. 2662-2666.
J. Glorioso, et al., "Development and Application of Herpes Simplex Virus Vectors for Human Gene Therapy," Annu. Rev. Microbiol., vol. 49 (1995), pp. 675-710.
D. Goldstein, et al., "Herpes Simplex Virus Type 1-Induced Ribonucleotide Reductase Activity Is Dispensable for Virus Growth and DNA Synthesis: Isolation and Characterization of an ICP6 IacZ Insertion Mutant," Journal of Virology, vol. 62, No. 1 (Jan 1988), pp. 196-205.
D. Goldstein, "Factor(s) Present in Herpes Simplex Virus Type 1-Infected Cells Can Compensate for the Loss of the Large Subunit of the Viral Ribonucleotide Reductase: Characterization of an ICP6 Delection Mutant," Academic Press, vol. 166 (1988), pp. 41-51.
S. Arab, et al., "The Gene Encoding Bovine Brain-Derived Neurotrophic Factor (BDNF)," Gene, vol. 185 (1997), pp. 95-98.
J. Glorioso, et al., "HSV as a Gene Transfer Vector for the Nervous System," Molecular Biotechnology, vol. 4 (1995), pp. 87-99.
C. Brandt, et al., "The Herpes Simplex Virus Type 1 Ribonucleotide Reductase is Required for Acute Retinal Disease," Arch Virol, vol. 142 (1997), pp. 883-896.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Replication competent, avirulent Herpes simplex virus as a vecto does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Replication competent, avirulent Herpes simplex virus as a vecto, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Replication competent, avirulent Herpes simplex virus as a vecto will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-577512

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.